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Abstract

In this paper I present a Hilbert style axiomatic system for intuitionistic
first-order logic with strong negation. I show that in this system we have
an octagon of opposition. This rests on the facts that (1) intuitionistic
logic is a S4 modal logic and thus truth is persistent, i.e. truth means
necessary truth and (2) necessity does not commute with universal quan-
tification.

1 Introduction

It is a well known fact that there is no square of oppositions in standard intu-
itionistic logic (IL). The main formal and ineluctable reason is that there is
no duality between A is proved (= is true) and the intuitionistic negation of A,
noted ¬A (= A → ⊥), is proved. This is based on the very fundamental prop-
erty that A and ¬¬A are not logically equivalent in intuitionistic logic. This, in
turn, is the consequence of the fact that intuitionistic truth is persistent - when
A is proved, it is definitively proved, while not to be proved is not persistent:
From A is not true we cannot conclude that ¬A is, because if A is not proved
it may be proved in a subsequent step of the development of the theory or ¬A
may be proved in a subsequent step of the development of the theory.

The question is: Is it possible to have a logic slightly stronger than IL with
a negation connective, let say “∼” such that ∼∼ A is logically equivalent to
A? The answer is yes and this follows from Nelson concept of “Constructive
falsity”. In few words, Nelson noticed that even though standard intuitionistic
logic distinguishes (as it should) between ¬(∀x)¬A(x) and (∃x)A(x), it should
also be able to express, in number theory, that ¬∀xA(x) is true only if there is
a proof of ¬A(n) for some n. The problem is that ¬(∀x)A(x) is true whenever
there is a constructive proof of (∀x)A(x)→ ⊥, proof that does not, in general,
give such a n.

In a previous paper (Lepage 2016), I showed that in propositional intuition-
istic logic with strong negation there is a square of opposition. In the present
paper, I will firstly briefly recall this proof. I will then look at what happen if
we introduce strong negation in first order intuitionistic logic.
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2 The Language L of ILSN

2.1 The Language

The language L of Intuitionistic Logic with Strong Negation is the standard
language of classical propositional calculus. The sole differences will be the in-
terpretation of negation and of implication. As usual, the set of atomic proposi-
tions is AT = {>, p0, ..., pi, ...} where > is a symbol that will denote the truth.
The set LT of literals is the union of AT and set {∼ pi|pi ∈ AT}.

Definition .1. (Well formed formulas) The set of well formed formulas (WFF )
is the smallest set such that
1. AT ⊆WFF ;
2. If A,B ∈WFF then ∼ A, (A ∧B), (A ∨B), (A→ B) ∈WFF .

We define ⊥ =def∼ >.

2.2 An Axiomatic System

Definition .2. Let us consider the following Hilbert-style axiomatic system.

A1 A→ (B → A)
A2 (A→ (B → C))→ ((A→ B)→ (A→ C))
A3 (A ∧B)→ A
A4 (A ∧B)→ B
A5 A→ (A ∨B)
A6 B → (A ∨B)
A7 (A→ C)→ ((B → C)→ ((A ∨B)→ C))
A8 ⊥ → A
A9 ∼∼ A→ A
A10 A→ ∼∼ A
A11 ∼ (A ∧B)→ (∼ A ∨ ∼ B)
A12 ∼ (A ∨B)→ (∼ A ∧ ∼ B)
A13 (A ∧ ∼ A)→ ⊥
A14 ∼ (A→ B)→ (A ∧ ∼ B)
A15 (A ∧ ∼ B)→ ∼ (A→ B)
A16 ∼ A→ (A→ B)
A17 A→ (B → (A ∧B))
A18 (∼ A ∨ ∼ B)→ ∼ (A ∧B)
A19 (∼ A ∧ ∼ B)→ ∼ (A ∨B)
A20 >
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The only rule is modus ponens.
Theoremhood and the consequence relation are defined as usual. We write

Γ ` A when A is a consequence of a set of sentences Γ. We call this system
intuitionistic logic with strong negation (ILSN).

One can ask the following question: Is the introduction of strong negation
trivializes the logic i.e., reduces the logic to the classical one? The answer is no,
because we still don’t have A ∨ ∼ A nor A ∨ ¬A.

2.3 A Kripke Semantics for ILSN

We define the notion of a (Kripke) frame and the notion of a canonical (Kripke)
frame. The fundamental notion is that of deductively close, saturated, consis-
tent set (DCSC), which will play a role similar to maximally consistent sets in
classical logic.

Definition .3. A Kripke frame is a pair {W,R} such that W is a set of nodes
and R is a transitive and reflexive relation on W .

Definition .4. A Kripke model is a pair << W,R >, f > where W,R} is a
Kripke frame and f : LT → ℘(A) is such that, for any pi and any f , f(pi)∩f(∼
pi) = ∅.

Intuitively, w ∈ f(pi) (resp. w ∈ f(∼ pi)) means that pi holds at node w
(resp ∼ pi holds at w). These conditions cannot hold together in any w even if
they can be both not true in some w.

Definition .5. A set Γ of wff of ILSN is a DCSC iff

1. A ∈ Γ iff Γ ` A;
2. (A ∨B ∈ Γ iff A ∈ Γ or B ∈ Γ;
3. Γ 0 ⊥.

We can easily show that :

If ∆ is a consistent set of wff of L and ∆ 0 A, then there is a DCSC Γ
such that ∆ ⊆ Γ and Γ 0 A.

Definition .6. Let Γ be a DCSC. We call bicharasteristic function of Γ the
partial function fΓ such that fΓ : WFF → {0, 1}with

fΓ(A) = 1 if A ∈ Γ;
fΓ(A) = 0 if ∼ A ∈ Γ;
fΓ(A) is undefined otherwise.
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Definition .7. A valuation is a partial function f : AT → {0.1}

To each valuation f correspond one and only one Γ ∈ DCSC. We note the
extension of the valuation f ′

Γ which is such that f ′
Γ(A) = 1 iff A ∈ Γ.

Let W be the set of all DCSC. Clearly, ⊆ is a partial order on W . So,
< W,⊆> is a Kripke frame. Let fΓ be any valuation.

<< W,⊆>, fΓ > is a model such that, for any wff A, f ′
Γ(A) = 1 iff A ∈ Γ.

< W,⊆> is a canonical Kripke frame, that is, for any A such that ∆ 0 A,
there is a DCSC Γ with ∆ ⊆ Γ such that f ′

Γ(A) 6= 1.

2.4 A Square of Opposition

In ILSN we have the following square of oppositions.

A oo
C //

aa

!!

CY

SU

��

∼ A

SU

��
¬¬A oo SC //
}}

==

¬A

Abbreviations
C (Contrary)
SC (Subcontrary)
SU (Subaltern)
CY (Contradictory)

3 Adding quantifiers

3.1 The language L′

We first add to the language L of propositional calculus (with the two nega-
tions) a new symbol ∀, a denumerable set of constants Con = {a0, ..., an, ...},
a denumerable set of variables V ar = {x0, ..., xn, ...} and a denumerable set of
predicates Pred = {P 1

0 , ..., P
1
n , ..., P

m
0 , ..., Pm

n , ...}. It is convenient to adopt the
convention that pn is P 0

n . In Pm
n , m is the number of place of the predicate

and n is a part of the name of the predicate (we call this language L′). With
the above convention, an atom pn is a 0-place predicate. The set T of terms is
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Con ∪ V ar.

We have to introduce the notion of basic well formed formulas which will
play a role similar to literals in the propositional calculus. The reason is that the
logic is no more binary: the introduction of strong negation has the consequence
that to be false is no more not to be true. There is a third possibility, to be
undefined. The introduction of strong negation re-establish a duality between
to be true and to be (strongly) false.

Definition .8. The set of basic well formed formulas (BWFFL′) is the smallest
set such that, for any i, j ∈ N, P i

j (b1, ..., bk) and ∼ P i
j (b1, ..., bk) where the bk,

k ≤ i are terms.

Definition .9. (Well formed formulas). (We drop the index L′). The set of
well formed formula (WFF ) is the smallest set such that :

1. BWFF ⊆WFF ;
2. If A,B ∈WFF , then ∼ A, (A ∧B), (A ∨B), (A→ B), (∀(xi)A) ∈WFF .

In the formula (∀(xi)A), A is call the scope of (∀xi). A variable xi having an
occurrence in A is said to be free in A if it is not in the scope of (∀xi), otherwise
it is said to be bound.

3.2 An Axiomatic System

Definition .10. An axiomatic system for first order intuitionistic logic (AFOIL)
is provided :

A1 A→ (B → A)
A2 (A→ (B → C))→ ((A→ B)→ (A→ C))
A3 (A ∧B)→ A
A4 (A ∧B)→ B
A5 A→ (A ∨B)
A6 B → (A ∨B)
A7 (A→ C)→ ((B → C)→ ((A ∨B)→ C))
A8 ⊥ → A
A9 ∼∼ A→ A
A10 A→ ∼∼ A
A11 ∼ (A ∧B)→ (∼ A ∨ ∼ B)
A12 ∼ (A ∨B)→ (∼ A ∧ ∼ B)
A13 (A ∧ ∼ A)→ ⊥
A14 ∼ (A→ B)→ (A ∧ ∼ B)
A15 (A∧ ∼ B)→ ∼ (A→ B)
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A16 ∼ A→ (A→ B)
A17 A→ (B → (A ∧B))
A18 (∼ A ∨ ∼ B)→ ∼ (A ∧B)
A19 (∼ A ∧ ∼ B)→ ∼ (A ∨B)
A20 >
A21 ∀(xi)A(xi)→ A(aj |xi) for any aj
A22 A(aj)→∼ ∀(xi) ∼ A(xi|aj) for any aj
A23 ∼ ∀(xi)A(xi)→∼ A(aj |xi) for some aj

Abbreviation (∃xi)A(xi) =def∼ (∀xi) ∼ A(xi)

Besides modus ponens, we have two new rules:

(∀)gen : If Γ ` A→ B, then ` A→ (∀xi)B for xi not free in A.
(∃)gen : If Γ ` (∃xi)A→ B, then ` A→ B for xi not free in B.

The définitions of a theorem and of a derivation are the standard ones.
Definition .11. Let Γ be a set of wff of WFFL′ such that,

1. A ∈ Γ iff Γ ` A;
2. (A ∨B) ∈ Γ iff A ∈ Γ or B ∈ Γ;
3. Γ 0 ⊥.

We say that Γ is a deductively close, saturated and consistent set (DCSC )
of wff.

Notice that this definition is the same as for the propositional case excepted
that WFF and ` are, of course, not the same.

The fundamental property of the (DCSC ) is given by the following proposi-
tion.
Proposition .1. Let Γ be a consistent set of wff and A 0 Γ, then there is a
DCSC ∆ such that Γ ⊆ ∆ and A /∈ ∆.

Proof

(This proof is not constructive.)
A is called the test formula. Let E =< E0, E1, E2, ... > be an enumeration of all
wff s where each wff appears denumerably many times. We define the following
sequence of sets:
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Γ0 = Γ;
.
.
.

Γk+1 = Γk if Γk ∪ {Ek} ` A;
Γk+1 = Γk ∪ {Ek} if {Γk} ` Ek, and Ek is not (B ∨ C);
if Ek is (B ∨ C), Γk+1 = Γk ∪ {Ek} ∪ {B} if Γk ∪ {Ek} ∪ {B} 0 A
else Γk+1 = Γk ∪ {Ek} ∪ {C}.

We define

∆ =

∞⋃
k=0

Γk

Claim

(1) ∆ 0 A

We first show that, for any k, Γk 0 A.

For k = 0, it is trivial. Let us suppose that Γk 0 A, we show that Γk+1 0 A.

If Γk+1 = Γk ∪ {Ek} because Γk ` Ek, and Ek is not (B ∨C), we easily get the
result.

Let us suppose that Ek is (B ∨ C).

If Γk+1 = Γk ∪ {Ek} ∪ {B} because Γk+1 0 A, it is trivial;

If Γk+1 = Γk ∪{Ek}∪ {C} because Γk ∪{Ek}∪ {B} ` A, we have to show that
Γk ∪ {Ek} ∪ {C} 0 A.

Let us suppose that Γk ∪ {Ek} ∪ {C} ` A.

From The axiom A7, the deduction theorem and the fact Ek is (B∨C) we have
that

Γk ∪ {(B ∨ C)} ` A which contradicts the hypothesis.
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(2) If ∆ ` B, then B ∈ ∆ because B is one of the Ek.

(3) ∆ is saturated, i.e., if B ∨ C ∈ ∆, then B ∈ ∆ or C ∈ ∆. It is a trivial
consequence of the definition of the ∆’s.

(4) ∆ is consistent. This follows from the fact that ∆ 0 A.

�

A very important consequence of the proposition.1 is the following: if W is
a consistent set and A is classically valid such that A /∈W , there is a DCSC Γ
such that W ⊆ Γ such that A /∈ Γ.

We can now use DCSC’s for providing a semantics for AFOIL

3.3 A Kripke Semantics for AFOIL

Let us recall that a Kripke frame is a pair < W,R > where W is a set of
nodes and R is a reflexive and transitive relation on W . Let D be a denumer-
able set of objects. For any n ∈ N we consider the set of ℘(Dn) of subsets of Dn.

Definition .12. (Interpretation)

An interpretation I for L′ is a triplet < D, ( )Pred
I , ( )Con

I > where:
1. D is a domain;
2. To each predicate letter Pn

m is assigned (Pn
m)Pred

I which is a set of n-uple of
elements of D.
3. To each constant ai is assigned (ai)

Con
I which is a fixed element of D.

The connectives receive (even ∼) there usual interpretation of Kleene strong
connectives. The interpretation of→ is the usual interpretation in intuitionistic
logic.

We can now define a Canonical Kripke frame.

Proposition .2. The pair < DCSC,⊆> is a canonical Kripke frame. The
canonical model in the canonical Kripke frame is the 3-uple << DCSC,⊆>,`
>. We have to remember that for any Γ ∈ DCSC, Γ ` A iff A ∈ Γ.

Proof

The fact that < DCSC,⊆> is a Kripke frame is trivial. The fact that
<< DCSC,⊆>,` > is a model is also trivial. The model is a canonical one
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because if ∆ is a consistent set such that A /∈ ∆, there is a DCSC Γ, ∆ ⊆ Γ,
such that A /∈ Γ and thus Γ 0 A.
�

Proposition .3. Any DCSC Γ define a 3-value valuation.

Proof Let A be any wff , and let fΓ be such that:
fΓ : WFF → {0, 1, u} fΓ(A) = 1 iff A ∈ Γ
fΓ(A) = 0 iff ∼ A ∈ Γ
fΓ(A) = u (undefined) otherwise.
We have fΓ(∼ A) = 1 iff ∼ A ∈ Γ and
fΓ(∼ A) = 0 iff ∼∼ A ∈ Γ iff A ∈ Γ
Otherwise, fΓ(A) = fΓ(∼ A) = u.

�

Proposition .4. Let A be any wff and Γ any DCSC. There is three and only
three possibilities :

1. A ∈ Γ and ∼ A /∈ Γ
2. ∼ A ∈ Γ and A /∈ Γ
3. A /∈ Γ and ∼ A /∈ Γ

If A is classically valid, only 1. and 3. are possible options.
If A is a classical contradiction, only 2. and 3. are possible options.

Proof

This is a straightforward consequence of proposition .3.

�

We easily prove soundness and completeness but the proofs are too longer to
be given here. As these proofs are simple generalization of those of the propo-
sitional case, we once more refer the reader to Lepage (2016). The proofs go
along the following lines. For soundness, we check directly that every axiom is
valid for the interpretation given above and we check that the rules transmit
validity. For completeness, we suppose that some valid wff A is not a theo-
rem and then, using what we called the fundamental property, that there is a
member of DCSC that does not contain A so A is not true at this node in the
canonical model.

Proposition .5. Let us consider the following four sets of pairs of wff .
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PC = {< (∀x)A, (∀x) ∼ A >,< (∀x)¬¬A, (∃x) ∼ A >,< (∃x)A, (∀x)¬A >}
PSC = {< (∃x)¬¬A, (∃x)¬A >,< (∃x)A, (∃x) ∼ A >,< (∀x)¬¬A, (∀x)¬A >}
PSU = {< (∀x)A, (∃x)A >,< (∃x)A, (∃x)¬¬A >,< (∀x)A, (∀x)¬¬A >,
< (∀x)¬¬A, (∃x)¬¬A >,< (∀x) ∼ A, (∃x) ∼ A >,< (∃x) ∼ A, (∃x)¬A >,
< (∀x) ∼ A, (∀x)¬A >,< (∀x)¬A, (∃x)¬A >}
PSY = {< (∀x)A, (∃x)¬A >,< (∀x) ∼ A, (∃x)¬¬A >}
The 3 pairs of PC are contrary pairs.
The 3 pairs of PSC are sub-contrary pairs.
The 8 pairs of PSU are subaltern pairs (+ 2 by transitivity).
The 2 pairs of PSY are contradictory pairs.

Proof

We give a proof for four cases, the others are left to the reader. For PC , let
us suppose that (∀x)A, (∀x) ∼ A are both true in some Γ. Applying A21 to
both, we have that A(a|x) and ∼ A(a|x) are in Γ and thus Γ is inconsistent and
is not a DCSC.

Thus, they can both be false. Let us suppose that we have ∼ (∀x)A and
∼ (∀x) ∼ A. Using A23 twice, we get ∼ A(ai|x) for some ai and ∼∼ A(aj |x)
for some aj . By A9, we get A(aj |x), and both can be true at the same time.

The second pair is < (∀x)¬¬A, (∃x) ∼ A > i.e., < (∀x)¬¬A, (∼ ∀x) ∼∼
A >. Let us suppose they are both in the same Γ. By A21, we get ¬¬A(ai|x)
for any ai. From the second term we get, ∼∼∼ A(aj |x) for some aj . Using A9,
we get ∼ A(aj). But ∼ A(aj)→ ¬A(aj) i.e., ∼ A(aj)→ (A(aj)→ ⊥) by A16.
Taking i = j, we have both ¬¬A(aj) and ¬A(aj) i.e., ((A(aj)→ ⊥)→ ⊥) and
(A(aj)→ ⊥) which leads to a contradiction.

Thus, they can both be false i.e., ∼ (∀x)¬¬A and ∼ (∀x) ∼ A.

From the first member, we get ∼ ¬¬A(ai) for some ai i.e., ∼ ((A(ai) → ⊥) →
⊥). By A14, we get ((A(ai)→ ⊥)∧ ∼ ⊥) and finally ¬A(ai). From the second
member ∼∼∼ A(aj) for some aj . By A10 we get ∼ A(aj). But ¬A(ai) and
∼ A(aj) can be both true and we have the expected result.

Let us consider a pair in PSC

We prove that (∃x)¬¬A and (∃x)¬A can be both true but they can’t be both
false. If (∃x)¬¬A hold in Γ, then ∼ (∀x) ∼ ¬¬A and ∼∼ ¬¬A(ai) holds in
Γ for some ai. Furthermore, by A9, ¬¬A(ai). We apply the same treatment
to (∃x)¬A and we show that ¬A(aj) hold in Γ for some A(aj). This is consistent.
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We show that they can’t be both false. Let us suppose that ∼ (∃x)¬¬A is
in Γ. Then ∼∼ (∀x) ∼ ¬¬A is also in Γ by A9. Then (∀x) ∼ ¬¬A is also in Γ.
This implies that ∼ ¬¬A(ai) is in Γ for all ai. This means that ∼ (¬A(ai)→ ⊥)
is in Γ. By A14, (¬A(ai)∧ ∼ ⊥) is in Γ. Thus ¬A(ai) is in Γ.

We apply the same treatment to ∼ (∃x)¬A and we get that for any aj , A(aj)
is in Γ. We reach a contradiction.

Our fourth example is for a pair in PSU .

Let us consider the pair <(∃x)A, (∃x)¬¬A>. We show that (∃x)A and
∼ (∃x)¬¬A lead to a contradiction.

From (∃x)A we get ∼ (∀x) ∼ A. We derive ∼∼ A(ai) for some ai and thus
A(ai).

From ∼ (∃x)¬¬A we get ∼∼ (∀x) ∼ ¬¬A. By A9, we get (∀x) ∼ ¬¬A. By
S21, we get ∼ ¬¬A(aj) for all A(aj). This is an abbreviation for ∼ ((A(aj) →
⊥)→ ⊥). By A14, we derive ((A(aj)→ ⊥)∧ ∼ ⊥) and then we derive (A(aj)→
⊥).

Finally, taken j = i we get A(ai) and (A(ai)→ ⊥) and using MP we have a
contradiction.
�
We then have the following octagon of oppositions.

(∀x)A
cc

CY

##

oo C //

SU

��

SU

��

(∀x) ∼ A
;;

CY

{{

SU

��

SU

��
(∃x)A 44

C

44

SU

��

(∀x)¬¬A
++

SC

''

SU

��

(∃x) ∼ A

C
ss

SC

jj

SU

��

(∀x)¬A
ww

SU

��
(∃x)¬¬A oo SC // (∃x)¬A

The labels of arrows have the same meaning as for the square.
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4 Conclusion

Rather than state a conclusion, I will suggest a moral to this story. The natural
aspect and the elegance of this construction shows, if it were still necessary,
that it is possible to restore the duality between truth and falsity in intuitionis-
tic logic without affecting its fundamental concept and principle which are the
rejection of the law of excluded middle and that of bivalence.
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