# Recycling proofs

Petrucio Viana\* IME–UFF

3rd World Logic Day

January 14, 2021

\* Joint work with: Márcia R. Cerioli (COPPE-IM-UFRJ) & Raphael de Marreiros

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

## Sumary

1. Natural radical numbers

2. The even-odd proof

3. The prime number proof

4. Interating the prime number proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

5. Non-conclusions

# 1. Natural radical numbers

#### Natural radical numbers

Let  $r \in \mathbb{R}$ 

We say that r is a *natural radical number* if there are  $n, a \in \mathbb{N}$  such that

 $r = \sqrt[n]{a}$ 

When is a natural radical number an irrational number?

Very well known answer

 $r = \sqrt[n]{a}$  is irrational iff there is no b such that  $a = b^n$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

### Radical numbers

We are not interested in the result, but in the proofs

How to prove this fact?

More specifically, we are interested in the way we can **produce** and **write** a proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How to produce and write a prof of this fact?

Let us start with the classical result:

#### $\sqrt{2}\not\in\mathbb{Q}$

#### First, we examine the even-odd proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Notation

We adopt the following abbreviations:

- $\Sigma$  for Suppose that ...
- $\Delta$  for From this, we have ...
- $\Omega$  for We know that ...
- $\rightarrow \leftarrow$  for This contradicts the hypothesis MDC(*a*, *b*) = 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

# 2. The even-odd prof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Oldest example

 $\sqrt{2}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\Sigma : \sqrt{2} = a/b \land \mathsf{MCD}(a, b) = 1$$
$$\Delta : 2b^2 = a^2$$
$$\Delta : a^2 \in 2\mathbb{N}$$
$$\Omega : a \in 2\mathbb{N} \lor a \in 2\mathbb{N} + 1$$
$$\Sigma : a \in 2\mathbb{N} + 1$$
$$\Delta : a = 2n + 1$$
$$\Delta : a^2 = 4n^2 + 4n + 1$$
$$\Delta : a^2 \in 2\mathbb{N} + 1, \rightarrow \leftarrow$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $\Delta$  : a = 2m

#### Oldest example

 $\sqrt{2}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma &: \sqrt{2} = a/b \land \mathsf{MCD}(a, b) = 1\\ \Delta &: 2b^2 = a^2\\ \Delta &: a^2 \in 2\mathbb{N}\\ \Omega &: a \in 2\mathbb{N} \lor a \in 2\mathbb{N} + 1\\ \Sigma &: a \in 2\mathbb{N} + 1, \rightarrow \leftarrow\\ \Delta &: a = 2m\\ \Delta &: 2b^2 = 4m^2\\ \Delta &: b^2 \in 2\mathbb{N}\\ \Delta &: b = 2k\\ \Delta &: \mathsf{MCD}(a, b) \geq 2 > 1, \rightarrow \leftarrow \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

## What about $\sqrt{3}$ ?

 $\sqrt{3}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\Sigma : \sqrt{3} = a/b \land \mathsf{MCD}(a, b) = 1$$
$$\Delta : 3b^2 = a^2$$
$$\Delta : a^2 \in 3\mathbb{N}$$
$$\Omega : a \in 3\mathbb{N} \lor a \in 3\mathbb{N} + 1 \lor a \in 3\mathbb{N} + 2$$
$$\Sigma : a \in 3\mathbb{N} + 1$$
$$\Delta : a = 3n + 1$$
$$\Delta : a^2 = 9n^2 + 6n + 1$$
$$\Delta : a^2 \in 3\mathbb{N} + 1, \rightarrow \leftarrow$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# What about $\sqrt{3}$ ?

 $\sqrt{3}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma : \sqrt{3} &= a/b \wedge \mathsf{MCD}(a, b) = 1\\ \Delta : 3b^2 &= a^2\\ \Delta : a^2 \in 3\mathbb{N}\\ \Omega : a \in 3\mathbb{N} \lor a \in 3\mathbb{N} + 1 \lor a \in 3\mathbb{N} + 2\\ \Sigma : a \in 3\mathbb{N} + 1, \rightarrow \leftarrow\\ \Sigma : a \in 3\mathbb{N} + 1, \rightarrow \leftarrow\\ \Delta : a = 3n + 2\\ \Delta : a^2 &= 9n^2 + 12n + 3 + 1\\ \Delta : a^2 \in 3\mathbb{N} + 1, \rightarrow \leftarrow \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# What about $\sqrt{3}$ ?

 $\sqrt{3}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma &: \sqrt{3} = a/b \land \mathsf{MCD}(a, b) = 1 \\ \Delta &: 3b^2 = a^2 \\ \Delta &: a^2 \in 3\mathbb{N} \\ \Omega &: a \in 3\mathbb{N} \lor a \in 3\mathbb{N} + 1 \lor a \in 3\mathbb{N} + 2 \\ \Sigma &: a \in 3\mathbb{N} + 1, \rightarrow \leftarrow \\ \Sigma &: a \in 3\mathbb{N} + 2, \rightarrow \leftarrow \\ \Delta &: a = 3m \\ \Delta &: 3b^2 = 9m^2 \\ \Delta &: b^2 \in 3\mathbb{N} \\ \Delta &: b = 3k \\ \Delta &: \mathsf{MCD}(a, b) \ge 3 > 1, \rightarrow \leftarrow \end{split}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

# What about $\sqrt{5}$ ?

 $\sqrt{5}\not\in\mathbb{Q}$ 

Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma &: \sqrt{5} = a/b \land \mathsf{MCD}(a, b) = 1 \\ \Delta &: 5b^2 = a^2 \\ \Delta &: a^2 \in 5\mathbb{N} \\ \Omega &: a \in 5\mathbb{N} \lor a \in 5\mathbb{N} + 1 \lor \cdots \lor a \in 5\mathbb{N} + 4 \\ & \Sigma &: a \in 5\mathbb{N} + 1, \rightarrow \leftarrow \\ & \vdots \\ & \Sigma &: a \in 5\mathbb{N} + 1, \rightarrow \leftarrow \\ & \vdots \\ & \Sigma &: a \in 5\mathbb{N} + 4, \rightarrow \leftarrow \\ \Delta &: a \in 5\mathbb{N} \\ \Delta &: b^2 \in 5\mathbb{N} \\ \Delta &: b \in 5\mathbb{N} \\ \Delta &: \mathsf{MCD}(a, b) \ge 5 > 1, \rightarrow \leftarrow \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### We already know what to do! $p \text{ is prime} \Rightarrow \sqrt{p} \notin \mathbb{Q}$

Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma : \sqrt{p} &= a/b \land \mathsf{MCD}(a, b) = 1 \\ \Delta : pb^2 &= a^2 \\ \Delta : a^2 \in p\mathbb{N} \\ \Omega : a \in p\mathbb{N} \lor a \in p\mathbb{N} + 1 \lor \dots \lor a \in p\mathbb{N} + (p-1) \\ \Sigma : a \in p\mathbb{N} + 1, \rightarrow \leftarrow \\ \vdots \\ \Sigma : a \in p\mathbb{N} + (p-1), \rightarrow \leftarrow \\ \Delta : a \in p\mathbb{N} \\ \Delta : pb^2 &= p^2m^2 \\ \Delta : b^2 \in p\mathbb{N} \\ \Delta : b \in p\mathbb{N} \\ \Delta : \mathsf{MCD}(a, b) \geq p > 1, \rightarrow \leftarrow \end{split}$$

For each prime number p, we have a proof that  $\sqrt{p} \notin \mathbb{Q}$ , whose length increase when p increase

If p = 282,589,933 - 1 which has 24,862,048 digits the proof would take more than 10.000 pages

#### But the problem is ...

To recycle the proof, we need to write, case by case, that all the statements

$$a \in p\mathbb{N} + 1, \dots, a \in p\mathbb{N} + (p-1)$$

are contradictory

The question is:

Can these local proofs (one for each fixed prime number) merge into a proof for the general case (an arbitrary prime number)?

I mean, proofs having approximately the same length

# 3. The prime number proof

#### Prime numbers

A point that deserves to be highlighted is that in the odd-even proofs, we do not explicitly write the part of the proof where the hypothesis "p is prime" is used

What is a prime number?

Let  $p \in \mathbb{N}$ ,  $p \neq 0, 1$ 

*p* is *baby-prime* if  $\forall a \in \mathbb{N} : a$ 

*p* is teenage-prime if  $\forall a \in \mathbb{N} : a \mid p \Rightarrow a = 1 \lor a = p$ 

*p* is adult-prime if  $\forall a, b \in \mathbb{N} : p \mid ab \Rightarrow p \mid a \lor p \mid b$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

We experimented with the notions of baby-prime and teenage-prime numbers and were only able to produce proofs that increase when the prime number increases

On the other hand, the notion of adult-prime gives us the **prime number proof** 



Proof by Reductio ad Absurdum:

 $\Sigma: \sqrt{2} = a/b \wedge MDC(a, b) = 1$  $\Delta: 2b^2 = a^2$  $\Delta$ : 2 |  $a^2$  $\Omega$ : 2 is adult-prime  $\Delta: 2 \mid a$  $\Delta$ : a = 2m $\Delta: 2b^2 = 4m^2$  $\Delta: b^2 = 2m^2$  $\Delta$ : 2 |  $b^2$  $\Omega$ : 2 is adult-prime  $\Delta: 2 \mid b$  $\Delta$ : MCD(a, b)  $\geq 2 > 1, \rightarrow \leftarrow$ 



Proof by Reductio ad Absurdum:

 $\Sigma: \sqrt{3} = a/b \wedge MDC(a, b) = 1$  $\Delta$ :  $3b^2 = a^2$  $\Delta$ : 3 |  $a^2$  $\Omega$ : 3 is adult-prime  $\Delta:3 \mid a$  $\Delta$ : a = 3m $\Delta: 3b^2 = 9m^2$  $\Delta: b^2 = 3m^2$  $\Delta$ : 3 |  $b^2$  $\Omega$ : 3 is adult-prime  $\Delta: 3 \mid b$  $\Delta$ : MCD(a, b)  $\geq$  3 > 1,  $\rightarrow \leftarrow$ 

### *p* is adult-prime $\Rightarrow \sqrt{p} \notin \mathbb{Q}$

Proof by Reductio ad Absurdum:

 $\Sigma: \sqrt{p} = a/b \wedge MDC(a, b) = 1$  $\Delta$  :  $pb^2 = a^2$  $\Delta : p \mid a^2$  $\Omega$  : *p* is adult-prime  $\Delta : p \mid a$  $\Delta$ : a = pm $\Delta : pb^2 = p^2m^2$  $\Delta$ :  $b^2 = pm^2$  $\Delta : p \mid b^2$  $\Omega$  : p is adult-prime  $\Delta : p \mid b$  $\Delta$ : MCD(a, b)  $\geq p > 1, \rightarrow \leftarrow$ 

The main point in the proofs above is ...

We had not merged (or tried to merge) a series of local proofs (one for each fixed prime number) in a proof for the general case (an arbitrary prime number)

In this case, exactly the same proof took care of all cases!!!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

All the proofs have the same length!!!

# 4. Iterating prime number proof

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### The main question

We proved that  $\sqrt{2} \notin \mathbb{N}$  (using the notion of an adult-prime)

After that we showed that the same proof shows that  $\sqrt{3} \not\in \mathbb{N}$ 

After that we showed that the same proof shows that  $\sqrt{p} \not\in \mathbb{N},$  for any prime number p

How far we can go with the prime number proof?

#### sketches for a solution

Let  $r \in \mathbb{R}$ 

We say that *r* is **suitable for the prime number proof** if (a version of) the prime number proof shows that  $r \notin \mathbb{Q}$ 

We proved that  $\sqrt{p}$  is suitable for the prime number proof, for every prime number p

#### Starting a solution

Now we exhibit some numbers which are also suitable for the prime number proof

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

More specifically, we treat the numbers of the forms  $\sqrt[n]{p^m}$ , considering the cases:

1. 
$$m = 1$$
 and  $n = 2$ 

- 2.  $n > m \ge 2$
- 3.  $(l+1)n > m > ln \ge 2$ , for l = 1, 2, 3, 4, ...

## $n \geq 2 \Rightarrow \sqrt[n]{p}$ is suitable for the prime number proof

Proof by Reductio ad Absurdum:

| Σ            | $: n \geq 2 \land \sqrt[n]{p} = a/b \land MDC(a, b) = 1$ |
|--------------|----------------------------------------------------------|
| Δ            | $: pb^n = a^n$                                           |
| Δ            | : p   a <sup>n</sup>                                     |
| Ω            | : p is adult-prime                                       |
| Δ            | :p a                                                     |
| Δ            | : a = pm                                                 |
| Δ            | $: pb^n = p^n m^n$                                       |
| $\Delta^{-}$ | $^{7}:p^{n-1}\in\mathbb{N}$                              |
| Δ            | $b^n = p^{n-1}m^n$                                       |
| Δ            | $: p \mid b^n$                                           |
| Ω            | : <i>p</i> is adult-prime                                |
| Δ            | : p   b                                                  |
| Δ            | $: MCD(a, b) \geq p > 1, \rightarrow \leftarrow$         |

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $n > m \ge 2 \Rightarrow \sqrt[n]{p^m}$  is suitable for the prime number proof Proof by Reductio ad Absurdum:

$$\begin{split} \Sigma &: n > m \ge 2 \land \sqrt[n]{p^m} = a/b \land \mathsf{MDC}(a, b) = 1 \\ \Delta &: p^m b^n = a^n \\ \Delta &: p^m \mid a^n \\ \Omega &: p \text{ is adult-prime} \\ \Delta &: p \mid a \\ \Delta &: a = pm \\ \Delta &: a = pm \\ \Delta &: p^m b^n = p^n m^n \\ \Delta^{-7} : p^{n-m} \in \mathbb{N} \\ \Delta &: b^n = p^{n-m} m^n \\ \Delta &: p \mid b^n \\ \Omega &: p \text{ is adult-prime} \\ \Delta &: p \mid b \\ \Delta &: \mathsf{MCD}(a, b) \ge p > 1, \rightarrow \leftarrow \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Continuing a solution

Now, to move from

$$n>m\geq 2$$
 and  $p$  is prime  $\Rightarrow \sqrt[n]{p^m}
ot\in\mathbb{Q}$ 

to

$$m > n \ge 2 \Rightarrow \sqrt[n]{p^m} \notin \mathbb{Q}$$

we need interate the core of the reasoning employed in the prime number proof

If m = nk we have  $\sqrt[n]{p^m} = p^k \in \mathbb{Q}$ 

So, we analyse the cases when *m* is between two consecutive multiples of *n*, that is, (l + 1)n > m > ln, for l = 1, 2, 3, 4, ...

### $2n > m > n \ge 2 \Rightarrow \sqrt[n]{p^m} \notin \mathbb{Q}$

Proof by Reductio ad Absurdum:

$$\Sigma : 2n > m > n \ge 2 \land \sqrt[n]{p^m} = a/b \land MDC(a, b) = 1$$
  

$$\Delta : p^m b^n = a^n$$
  

$$\Delta : p^m | a^n$$
  

$$\Omega : p \text{ is adult-prime}$$
  

$$\Delta : p | a$$
  

$$\Delta : a = pm$$
  

$$\Delta : p^m b^n = p^n m^n$$
  

$$\Delta^{-7} : p^{m-n} \in \mathbb{N}$$
  

$$\Delta : p^{m-n} b^n = m^n$$
  

$$\Delta^{-6} : p | m$$
  

$$\Delta : m = nk$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Continues on the next page ...

$$2n > m > n \ge 2 \Rightarrow \sqrt[n]{p^m} \notin \mathbb{Q}$$

Continuing the previous page ....

$$\begin{array}{l} \Delta^{-3} : p^{m-n}b^n = p^nk^n \\ \Delta^{-12} : p^{2n-m} \in \mathbb{N} \\ \Delta^{-2} : b^n = p^{2n-m}k^n \\ \Omega : p \text{ is adult-prime} \\ \Delta : p \mid b \\ \Delta : \mathsf{MCD}(a,b) \geq p, \rightarrow \leftarrow \end{array}$$

## $3n > m > 2n \ge 2 \Rightarrow \sqrt[n]{p^m} \notin \mathbb{Q}$

Proof by Reductio ad Absurdum:

$$\Sigma : 3n > m > 2n \ge 2 \land \sqrt[n]{p^m} = a/b \land MDC(a, b) = 1$$
  

$$\Delta : p^m b^n = a^n$$
  

$$\Delta : p^m \mid a^n$$
  

$$\Omega : p \text{ is adult-prime}$$
  

$$\Delta : p \mid a$$
  

$$\Delta : a = pm$$
  

$$\Delta : p^m b^n = p^n m^n$$
  

$$\Delta^{-7} : p^{m-n} \in \mathbb{N}$$
  

$$\Delta : p^{m-n} b^n = m^n$$
  

$$\Delta^{-6} : p \mid m$$
  

$$\Delta : m = pk$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Continues on the next page ...

## $3n > m > 2n \ge 2 \Rightarrow \sqrt[n]{p^m} \notin \mathbb{Q}$

Continuing the previous page ....

$$\begin{array}{l} \Delta^{-3} : p^{m-n}b^n = p^nk^n\\ \Delta^{-12} : p^{m-2n} \in \mathbb{N}\\ \Delta^{-2} : p^{m-2n}b^n = k^n\\ \Omega : p \text{ is adult-prime}\\ \Delta : p \mid k\\ \Delta : k = pl\\ \Delta^{-4} : p^{m-2n}b^n = p^nl^n\\ \Delta^{-19} : p^{3n-m} \in \mathbb{N}\\ \Delta^{-2} : b^n = p^{3n-m}l^n\\ \Omega : p \text{ is adult-prime}\\ \Delta : p \mid b\\ \Delta : MCD(a, b) \geq p, \rightarrow \leftarrow \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Going on

Using the same approach we can obtain a prime number like proof of

$$4n > m > 3n \ge 2 \Rightarrow \sqrt[n]{p^m}$$

by three iterations of the argument.

Also a prime number like proof of

$$5n > m > 4n \ge 2 \Rightarrow \sqrt[n]{p^m}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

by four iterations of the same argument.

#### Going on

Is it possible to merge all these proofs in a unique proof of

$$(l+1)n > m > ln \ge 2 \Rightarrow \sqrt[n]{p^m}$$

by *I* iterations of the argument?

For iterate the passage from  $p \mid a$  to  $p \mid b$ , we need the following:

**Lemma:** If  $m, n, p, a, b \in \mathbb{N}$ ,  $n \ge 2$  and p is prime, then  $\forall l \in \mathbb{N}$ , if  $m > ln \in p^m b^n = a^n$ ,  $\exists k \in \mathbb{N}$  such that  $p^{m-kn}b^n = p^n k^n$ .

The proof goes by induction on I.

$$(l+1)n > m > ln \ge 2 \Rightarrow \sqrt[n]{p^m} 
ot\in \mathbb{Q}$$

Proof by Reductio ad Absurdum:

 $\Sigma: (l+1)n > m > ln > 2 \land \sqrt[n]{p^m} = a/b \land MDC(a, b) = 1$  $\Delta : p^m b^n = a^n$  $\Delta : p^m \mid a^n$  $\Omega: p$  is adult-prime  $\Delta : p \mid a$  $\Delta^{-4}$ , Lemma :  $p^{m-ln}b^n = p^nk^n$  $\Delta^{-6}$  :  $p^{(l+1)n-m} \in \mathbb{N}$  $\Delta: b^n = p^{(l+1)n-m}k^n$  $\Delta : p \mid b$  $\Delta$  : MCD(a, b)  $\geq p, \rightarrow \leftarrow$ 

# 5. Non-conclusions

Proofs of the irrationality of  $\sqrt{2}$ 

There are many proofs of the irrationality of  $\sqrt{2}$ 

The even-odd proof seems to be applicable, case-by-case, only to numbers of the form  $\sqrt{p}$ 

The prime number proof is applicable to all numbers of the form  $\sqrt[n]{p^m}$ .

We already know that is also applicable to all numbers of the form  $\sqrt[n_1]{p}_1 \cdots \sqrt[n_k]{p}_k$ 

## Proofs of the irrationality of $\sqrt{2}$

What about the numbers of the form  $\sqrt[n_1]{p_1^{m_1}} \sqrt[n_2]{p_2^{m_2}} \cdots \sqrt[n_k]{p_k^{m_k}}?$ 

So, we have this concept of a class of radical numbers for which a proof of the irrationality of  $\sqrt{2}$  applies

We are developing this idea in order to get some answer to the following question

Given a proof showing that  $\sqrt{2}$  is irrational, how far can we repeat (or iterate) the reasoning used in the proof to prove that a number is irrational?

In other words, which is the biggest set of numbers that "the idea used in the proof" shows are irrational?