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Abstract In courses of logic for general students the general and existential quantifiers are
the only ones distinguished from among all possible quantifier expressions of the natural
language. One can argue that other quantifiers deserve mention, even though there are good
reason for emphasizing the familiar ones: namely, they are the simplest, the universal
quantifier is a counterpart of the operation of generalizing, the number of nested quantifiers is
a good measure of logical complexity, and the expressive power of the general quantifier and
its dual is considerable.

Yet, even in the teaching about these two simplest quantifiers it has not been resolved how
to indicate the realm to which a given quantifier refers. The methods range from the Fregean
assumption that they refer to the totality of objects in the world to the restricted quantifiers to
many sorted logic. It turns out that these approaches are not fully equivalent, because the sorts
are usually assumed to be nonempty, which results in a problem similar to the well-known
issue with non-emptiness of names in syllogistics.

Logicians have studied various generalized quantifiers. It is, however, unclear how to treat
the quantifier “many” and similar heavily context-dependent ones. They are not invariant
under isomorphisms so no purely logical or mathematical treatment seems applicable. How
else can one characterize the context-independent quantifiers among all possible quantifiers
corresponding to quantifier expressions in natural language? The following thesis on
quantifiers is proposed:

(Principal Thesis) Context-independence = definability in terms of the universal quantifier.

This thesis provides an additional reason for distinguishing the universal quantifier from
among all other quantifiers: it suffices for defining all context-independent ones.
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1 The universal quantifier and its dual

The introduction of quantifiers to logical systems constituted an essential progress with
respect to the calculus of Boolean connectives — even though the propositional calculus was
finally formulated as a system at about the same time as was the predicate (functional)
calculus. The wider system, including the quantifiers “for all” (V) and “there exists” (3), was
also a far reaching strengthening of syllogistics, the celebrated system that up to the 19"
century was seen as the core of logic, and that can be seen as an ancient form of a fragment of
the predicate calculus.

In logic, from Aristotle to Frege to mid-20™ century predicate logic, only two quantifiers
were incorporated: the general and the existential. They are still the only ones taught in
general logic courses. Because in classical logic 3 is the dual of V, that is, 3 = —V—, we can
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say that only the universal quantifier is added. (In some non-classical logic, e.g., the
intuitionistic logic, we need to retain the two quantifiers.)

From a certain natural point of view, namely the approach based on the linguistic realities, it
is not clear why the general and existential quantifiers are the only concepts distinguished
from among all possible quantifier expressions of the natural language. In natural language
there are dozens quantifier expressions, that is, expressions that state or estimate the number
of objects of a certain kind, or the size of a collection, or compare sizes, etc. They include
phrases like ‘all’, ‘always’, ‘nowhere’, ‘almost never’, ‘most’, ‘infinitely many’, ‘many’,
‘from time to time’, ‘a few’, ‘quite a few”, ‘several’, ‘just one’, ‘at least one’, ‘an
overwhelming part of’, ‘as many as’, ‘roughly as many as’, and many, many more, including
statements like “More girls study programming than boys learn boxing.” In mathematics,
some other quantifier expressions are used, for example ‘there are finitely many’, ‘there are
uncountably many’, ‘the set of ... is dense in ...", and the phrases like ‘almost all’, ‘a
negligible amount’ are given various precise meanings in specific mathematical theories.

For a long time logic did not recognize the rich realm of quantifiers or at least did not
perceive it as belonging to the domain of logic. What could be the reason for the distinguished
role of the familiar quantifiers? Let us try to argue from a logical perspective.

First, simplicity. ‘All things’ corresponds to the full set — either of all things or of all things
in our universe of discourse. ‘At least one thing’ corresponds to the notion of non-empty set,
or is the negation of being the empty set.

The two standard quantifiers are the simplest ones. At the same time, and this is the second
reason, we can see the general quantifier as an abstract counterpart of the operation of
generalization, our important mental faculty. (Existential quantifier is, as mentioned above, its
dual.) This operation can be seen as basic: in Richard Epstein’s Crifical thinking [1] only the
operation of generalization is mentioned, the quantifiers are not.

The third and fourth reasons are given after the following Digression and a fifth reason
emerges at the end of the paper.

2 A digression on the range of the familiar quantifiers

Whereas the quantifiers V and 3 are familiar now, their use causes some problems that are not
trivial, especially in the educational context, when general students are taught. One problem
is: what is the range of quantifiers, the realm to which a given quantifier refers? Another
problem appears when a standard answer is given to the first one: how to indicate the range?

Frege introduced quantifiers in his framework, in which everything, literally: every thing,
was included. For Frege, and similarly for his successors like Russell, (early) Wittgenstein or
Quine, there is only one value-range for quantifiers, namely “all the actually existing
individuals” (cf. Hintikka [7, p. 30] and Peters-Westerstihl [17, p. 40]) or even “all the
conceivably existing individuals” (as in Russell [18]). That assumption seems, however,
unsatisfactory. There are at least two main reasons for dissatisfaction. First, it seems that in
order to apply this approach the world must be perceived as a collection of things. In
particular, ‘always’ is expressible by V only if time is seen as composed of things such as
moments or segments. In addition, only timeless relations are naturally dealt with (cf. Epstein
[2] and [3], Appendix A). Second, to generalize over everything seems odd. In practice, we
almost always mean a specified limited range. Today we rarely share Frege’s ontology, but
we all continue to use his formalism (in a modified form, of course). The contemporary
prevailing approach to this formalism is, however, vastly different from his. The world is
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complex, and, usually, in a given moment we consider only some objects, that is, we specify
fragments of the whole world. We have overwhelmingly adopted the model theoretic
approach: models vary, and generality means “for all elements of an intended range.” The
formalism remains but its interpretation is different: logic is no more about “the world” but
rather about various “possible worlds”, or models. It was Tarski who helped convince
logicians to study truth in models. In Hintikka [7] it is also stressed that this new, model-
theoretic approach overcomes the difficulty inherent in Frege’s approach, namely, how to
identify the basic simple things, the “urindividuals”.

Having agreed on the limited range, we need to express that in the symbolism we use to deal
with quantifiers. There are two traditional ways of expressing the restriction on the range of
variables used inside (logical) formalism. One is the use of variables of different sorts. The
other is the use of restricted, or relativized, quantifiers. As is well known, it is easy to express
relativized quantifiers by unrestricted ones: for any predicates 4, B, C

(VX)cew A(x) = (VX)(C(x) > AX)),  (Ix)ce A(x) = @x)(C(x) A A(x)).
In terms of a variable 7, assumed to satisfy C(f), we simply have (V)A(f) and (3NA(?).

Is there a difference between the two methods? Of course, the approach is different: the
restrictions can be seen as imposed from outside the system in the case of the language with
different sorts of variables, while they are an optional part within the system in the case of
relativisation. Still, at the first glance it may seem that they are formally equivalent. But not
quite — there is a subtle difference. We normally assume that all sorts are nonempty —
similarly to the assumption that the universe is nonempty, or that in each model the universe
_of the model is nonempty. This assumption is not made about the predicate C(x).

Sometimes the possible emptiness of C is harmless. Explicit restrictions on the quantifiers
preserve the validity of de Morgan’s laws:

—:(Vx)c(x) A(x) = (Ex)c(x)—nA(x), ——.(Elx)c(x) A(x) B (Vx) c(x)—|A(x).

What about the other tautologies that are so useful in manipulating quantifier prefixes? Using
different sorts brings no harm. In contrast to that, relativisation may cause a problem! It seems
to me that while the story with (some) Aristotelian syllogisms being valid only under the
assumption that all the terms are non-empty is very well known, similar limitations
concerning relativized quantifiers are not generally known. It is easy to see (as was remarked
in Krajewski [11]) that the following theorem holds.

Remark on relativized quantifiers:

The following formulas are valid under relativisation to an arbitrary C (we assume that in 4
the variable x is not free):

(Vx)(4 v B(x)) = A v (Vx)B(x),
(Vx)(4 — B(x)) = A - (Vx)B(x),
(@x)A A B(x)) =4 A (3x)B(x),
(Vx)(B(x) > A) = (Ix)B(x) > A4,

The following formulas remain valid only when relativized to nonempty C (we assume that in
A the variable x is not free):

(Vx)(4 A B(x)) =4 A (Vx)B(x),
()4 v B(x)) = A v (Ix)B(x),
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@x)( - B(x)) =4 — (3x)B(),
@x)Bx) — 4) = (V)B(x) = A.

In other words the relativisations of the above tautologies are not valid, they are sometimes
false when C is interpreted as an empty set, but the following formulas are valid:

@F)Cx) = [(VX)cwd A B(x)) = 4 A (Vx)cwBE)],
(@Ax)CE) = (@) (A v Bx) =4 Vv (Fx)cw BX)],
(3x) C(x) = [@Ex)A — B(x)) =4 — (3x)B(x)],
(@)CE) = [@)cw (Bx) = 4) = (Vx)cw Bx) — A].

3 The power of V and 3

The third reason for the distinguishing of V' and 3 from among all possible quantifiers has to
do with logical complexity. The number of nested quantifiers is a good indicator of logical
complexity. The quantifiers V and 3 provide a great measure of complexity if the number of
alternating nested quantifiers is counted. The realization of this possibility gave rise to the
Kleene-Mostowski hierarchy, classifying the sets obtained from recursive sets by a series of
projections and complements. (See Kleene [10], Mostowski [15].) Then other similar growing
chains of ever more complicated objects were established, e.g., the analytic hierarchy. From
such a perspective these simple familiar quantifiers look like anything but trivial. It is also of
interest that neither Aristotle nor other pre-modern logicians considered nested quantifiers. If
teaching about quantifiers is limited to formulas, an especially tautologies, with one quantifier
or at most two, as is still done in coursed for general students, the matter looks rather trivial
and it remains unclear why the quantifiers are needed. The power of quantifiers, even the
simplest ones, is seen only when several are combined. This brings us to the next reason for
the distinguishing of V and 3.

The fourth reason emerges when one realizes that these quantifiers bring much more
expressive power than it would seem at first. When the standard additional machinery
available in logic is employed many new quantifiers can be defined. Some of them can be
easily defined within first order logic, for instance the numerical quantifiers: “there are
exactly n”, in short 3™, “there are more than n”, in short 3™, and their combinations (like
“there are three or four™), etc.

In higher order logics and in set theory many more quantifiers can be defined. Definitions in
mathematics are expressed in a technical language of a given branch, but logicians have been
able to express these definitions in the language of logic. Thus, for instance, “there are
infinitely many” cannot be defined in the 1% order logic, but can be defined in the 2™ order
logic. The Henkin quantifier, the first example of a branching quantifier, namely “for every x
there exists y, and independently of that for every z there exists # such that R(x, y, z, 1)”, also
goes beyond 1% order logic (see Henkin [6] and Krynicki et al. [13]), even though it reflects
such a way of using the familiar quantifier expressions corresponding to V and 3 that can be
found in natural language; this quantifier is easily defined in 2™ order logic: “there exist
functions f, g such that for every x and for every z R(x, fx), z, g(z))”. The phrase “there are
uncountably many” also defines a quantifier but it makes sense only in reference to a
background set theory. It was unexpected that this quantifier can be recursively axiomatized.
(See Keisler [8].) There are many more examples of mathematical quantifiers. They suggested
to mathematical logicians the concept of a “generalized quantifier”.
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4 Generalized quantifiers in logic

Generalized quantifiers were introduced to logic by Mostowski [16]. The formula (Qx)¢ (x) is
satisfied in a model M = (M,...) iff the set {a: M [ ¢ [a]} belongs to the family of subsets of
M that serves as the interpretation of Q. (Thus V is interpreted as {M} and 3 as the family of
all non-empty subsets of M.)

This notion was useful but was not sufficient for many formulations that are used in natural
language. Mostowski quantifiers are all of type <1>. The sentence “More girls study
programming than boys learn boxing” cannot be analyzed in logic with type <1> quantifiers
only. A more general definition was introduced by Lindstrém [14] who allowed quantifiers of
an arbitrary type <ny,...,m>> that bind more variables and apply to several formulas, and in a
model M are interpreted as relations between subsets of M (in the case of monadic quantifiers
of type <1,1,...,1>) or, more generally, relations between relations on M.

Both Mostowski and Lindstrém were mathematicians so they made an important
assumption which obviously seemed necessary to them: they consider only the quantifiers
that are invariant with respect to isomorphism. Formally, if M = M’ then

M E (Qx1,..5(@1s...,00) iff M” E (Qxp,... (@1, .., 00).

The assumption in the case of monadic quantifiers amounts to the fact that only the size of
the sets defined by the quantified formulas matters (cf. Peters-Westerstihl [17] or Westerstéhl
[20]). The assumption that logic should be completely topic-neutral constitutes the reason for
admitting into logic only the quantifiers invariant under isomorphism. Other mathematical
properties can be defined by isomorphism-preserving quantifiers. Yet they are not sufficient
for some quantifiers commonly used in natural language.

It is clear that logic is poorly equipped, if at all, to deal with many from among the
quantifier expressions listed above. For example, the concept “many” is different from the
more logical quantifiers and seems hardly definable in general since its meaning depends on
the situation in which the term is used. It is context-dependent. Peters and Westerstahl call it
“strongly” context-dependent and some authors call it intensional. (See Peters-Westerstahl
[17, p. 213]) To evaluate a sentence with such a context-dependent quantifier we need an

derstanding of the world, or at least of the appropriate fragment of the world.
Logic rcbelt is not sufficient. To know whether it is true or not that many women at my
university are pregnant or that many have been in Himalayas, we need to know how many
women of a given age are, on average, pregnant, and how many go to Himalayas.
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Despite the initial impression that the quantifier “many” is not definable, one could try to
define it formally, or to model it, by adding a variable ¢ and defining “many” as more
numerous than (the interpretation of) . This new variable can be either a numerical one,
interpreted as a cardinal number, or a set variable, interpreted as a certain set S. Then “many
x’s (satisfying ¢@)” is defined as having more members than S, or as the requirement that the
cardinality of the set of the values of x that satisfy the interpretation of ¢ is larger than the
cardinality of S. The set S depends on the context; it is chosen specifically for each
interpretation.

The problem with this attempt is that the definition of “a few” is the same, only with “<”
instead of “>". And the phrase “more than a few” is formalized exactly as is “quite a few” and
“many”. And do we normally identify “many” with “more than a few”? Hardly.

The above remarks should be easy to understand, but an example can still be helpful. A
certain number, say 7, can play the role of both delimitations in the same discourse. For
example, if exactly 7 students among the 20 students in my Warsaw university class have read
more than ten books in their lifetime and 7 are pregnant, I would say that it is true that “a few
read books” and “many are pregnant”. (Incidentally, I believe that there could exist schools
somewhere in the world in which 7 pregnant among 20 students would be seen as “few”, and
7 readers among them would be considered “many”.)

So everything depends on the context and introducing o is of no help. Only the context
counts.

We can still maintain that the logical content is better explained, when this formalization is
made. The important feature — and a problem from a normal logical perspective — is that
“many” defined as “more than ¢” is not invariant with respect to ismorphisms. To continue
our example, (G, P) = (G, R), where G is the class, P is the set of pregnant students in the
class, R is the set of book readers in the class, but the sentence “there are many x that ¢” is
true in one and false in the other interpretation.

What is more, the quantifier “many” does not have some monotonicity properties. It may
happen that M [ [(Vx) (¢(x) — w(x))] and still M [ [(Many x) ¢(x) & —(Many x) w(¥))]. It
may happen even if the inclusion of (the interpretation of) ¢ in (the interpretation of ) y is
strict. For example, if there were 8 students reading books, including each of the 7 who are
pregnant, there would still be many pregnant students and not many readers in the class.

Dealing with context-dependent quantifiers one can wonder how many contexts there are.
Infinitely many? This seems probable, at least in the case of a quantifier “many”. Is this the
reason we are unable to pin them down? If only finitely many contexts were possible, a fixed
number, then perhaps we could give a definition by listing all the cases. Notice that if a finite
but practically unmanageable number of contexts has to be taken into account then the
quantifier is still undefinable by us. However, a sufficiently strong intelligence, or even robot,
could perhaps do that. The problem is analogous to the problem whether a computer can
handle the natural language. The hopes of some early pioneers of Artificial Intelligence that
computers would speak as humans were naive. Yet in restricted settings, where contexts can
be comprehensively listed, it is perfectly possible to have computers “speak.”

5 Characterizing context-independent quantifiers

It seems that context-independence means that any extralogical terms referring to some
specific fragments of the world are irrelevant for the understanding of the formula. The topic
covered in the statement is of no consequence, only logic counts. Thus
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(1) Context-independent quantifiers = Topic neutral quantifiers

We can still maintain that a definition of (a quantifier) being context-independent is needed.
This is clear in specific cases, but can a general definition be given? What is needed is a
criterion — indeed, a context-independent criterion — for context-independence of quantifiers
(or perhaps even more generally, context-independence as such). The idea is, of course, quite
simple: there is no need for any specific knowledge about the world. Yet, one could say, to
understand the Magidor-Malitz quantifier one certainly needs some non-trivial knowledge. It
is, however, a purely logical knowledge (in the broad meaning of logic), different from the
knowledge of the features of the world, physical or social, that are relevant for the specific
situation. We might even try to say that what is needed for understanding the context-
independent quantifiers is the familiarity with merely the necessary features of the world. One
could ignore its contingent aspects.

It has been noticed above that when linguistic quantifier expressions are reconstructed
within logic the requirement of context-independence is formulated as invariance with respect
to isomorphisms. Thus, we get another thesis:

(2) Context-independent quantifiers = Quantifiers invariant under isomorphisms

Before another thesis proposing a characterization of context-independence of quantifiers is
attempted let us consider the meaning of being a thesis in this context. Church’s Thesis is the
best known example of a thesis identifying a formal concept with an intuitive one. The
mathematical concept of recursive function is identified with the intuitive concept of
effectively computable function. For a long time, the general conviction was that such a thesis
can be justified by various arguments, but there is no way to prove its correctness because the
intuitive concept is too vague to be part of a proof. However in recent decades there have
been various attempts (in particular by Robin Gandy, Wilfried Sieg, Yuri Gurevich) to prove
the identification. Namely, a proper analysis of the intuitive concept of computability can
provide principles that make possible a demonstration that a function satisfying them must be
recursive. There are more examples of similar theses, for instance “the Cantor-Dedekind
thesis” that real numbers are defined by the appropriate set theoretic constructions. (For a
discussion of Church’s Thesis and the other examples as well as references to literature see,
e.g., Krajewski [12].)

In the case studied in the present paper, it is the context-independence applied to quantifiers
that is the intuitive notion we want to characterize.

In addition to topic-neutrality and invariance under isomorphisms we can try look at the
ways the quantifier can be defined. It seems that whatever definition is formulated it cannot
be expressed without taking some specific logic into account. This is because quantifiers are
logical objects. They function inside a logical framework. On the other hand, it would be to
emphasize the logical nature but ignore any specific logic. The way out of the dilemma can be
as follows: the defining property is assumed to make sense in whatever logic it is formulated.
For instance, the phrase “¢(x,y) defines a well-ordering” defines a type <2> quantifier,
whether in 2™ order logic or in set theory.

Any quantifier Q can give rise to a “logic” L(Q). Then Q is trivially definable in this logic.
To avoid this triviality, let us call a logic basic if it is 1% order, 2™ order, n-th order, type
theory or set theory. Hence the following thesis

(3) A quantifier is context-independent iff it is definable in some basic logic.

Because the common part of all such logics, as far as quantification is concerned, is the
universal quantifier V, we can reformulate the thesis as
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(3’) A quantifier is context-independent iff it is V-definable in some (basic) logic.

Since we admit definability either in 1% order or 2" order or higher order logic or in
(formalized) set theory, and the general quantifier appears in each of these logics we can say
in short:

(4) A quantifier is context-independent iff it is definable in terms of V,
or briefly,
(Principal Thesis) Context-independence = definability in terms of V.

It is seen that the position of the general quantifier, or rather of our two familiar quantifiers,
V and 3, is vindicated. This is the fifth — in addition to simplicity, the faculty of
generalization, the measuring of complexity, and the expressive power — and rather
unexpected reason for distinguishing V: in the presence of the appropriate amount of logical
machinery but with no generalized quantifiers V suffices to define all context-independent
quantifiers. Thus the power of the universal and existential quantifiers is claimed to be even
stronger than it seemed on the basis of the definability of so many quantifiers by V.
According to the Principal Thesis, the power of V, at least in relation to quantifiers, extends
to the whole realm of context-independence.

Let us repeat that in each basic logic the universal quantifier is included, so definability in
terms of V is really the same as definability in (predicate) logic. The Principal Thesis says that
not only definability of generalized quantifiers in terms of V gives context-independence but
also that context-independent generalized quantifiers are so definable. Each specific example
of a quantifier has been defined (in the proper logic) in terms of V; the Thesis states the
generalization to all possible quantifiers.

6 Formalism-free definition of V- definable quantifiers?

There exists an alternative way of looking at the Principal Thesis. If we agree to it then we
can treat the Thesis as the proposal to characterize the definability of quantifiers with the use
of V (in basic logics) as context-independence, that is, a feature formulated without the
recourse to a specific syntactic machinery used in definitions. This brings to mind the problem
of formalism-free characterization of concepts.

The issue of “formalism freeness” has been introduced by G6del who commented on the
fact that all formal definitions of computable functions give the same class of functions.
Therefore, even though each definition requires some specific formalism, we have been able
to isolate an important class of functions in a formalism-free manner. Computability is
formalism-free, and Godel [4] proposed to look for a similar grasping of definability and other
notions. Some developments in mathematical logic, notably work done in model theory by
Shelah and Zilber, can be seen as going in this direction — see Kennedy [9]. According to
Shelah, in model theory, conceived as a tower, “the higher floors do not have formulas or
anything syntactical at all.” (Kennedy [9, p. 355])

In our case, the Principal Thesis gives the formalism-free characterization of the class of
quantifiers definable in some standard (predicate) logic, that is, using some formalism. In
each of these logics we have the quantifier V, so one can say that this is the class of
quantifiers definable in logic by V. The class consists of context-independent quantifiers. This
characterization is formalism-free.
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