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Abstract. The paper is a mathematical and philosophical essay devoted
to mathematical logic school created and guided by Andrzej Mostowski.
Firstly, We discuss some of the main – still actual – achievements of An-
drzej Mostowski, then we discuss weak sides of his scientific project. They are
computational and philosophical.

Scientific challenges of our times in logic are mainly computational. The
warsaw school of mathematical logic did not support this direction.

Partially because of political situation in Poland public philosophical
discussions were strongly influenced by hard–politics, including personal pol-
itics in academic institutions. Therefore many people thinks that isolation of
foundations and philosophy was forced by communist ideology. The impres-
sion is false. The abyss between philosophy and foundations was basically
independent of political situation in Poland.

What we can learn from this experience?
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Introduction

This work can be divided into two parts. The first one is devoted to three selected
topics of Andrzej Mostowski work in logic. Undoubtedly, it could not cover all his
important and influential works by him. The selection is partially personal and
partially on my opinion what was characteristic to his scientific interests.

This work was supported by the Polish National Science Centre [2013/11/B/HS1/04168].
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The second part is a philosophical and historical essay devoted to relations
of his school to philosophy and a new way of computational way of thinking. In
comparison to the first part it is much more personal and informal.

1. Some mathematical works in the foundations

We discuss here some selected ideas of Andrzej Mostowski.1

1.1. Permutation models

One of the most fascinating idea in foundation of mathematics of XX century
was undoubtedly the Axiom of Choice (AC).2 AC says that for every family F of
nonempty sets there is a choice function f : F −→

⋃
F such that ∀A ∈ F f(A) ∈

A. Zermelo invented it trying to prove his theorem, TZ: Every set can be well
ordered. He proved TZ assuming AC. However, having TZ it is easy to prove AC.
For any family F of nonempty sets, if we take any well ordering R on

⋃
F then

we can define a choice function taking f(A) = the R–smallest element of A, for
all A ∈ F .

The first question related to AC was whether it can be proved in Zermelo–
Fraenkel set theory (ZF). A partial answer was known relatively early. However it
was done only for the theory ZF extended by allowing elements not being sets, so
called atoms, it is called Zermelo–Fraenkel set theory with atoms (ZFA).3 Models
of ZFA are of the form V (A) =

⋃
α Vα(A), where V0(A) = A and for all ordinal

numbers α we take Vα+1(A) = P (Vα(A)) ∪ Vα(A), for a limit ordinal λ we take
Vλ(A) =

⋃
α<λ Vα(A). We assume that the set A is infinite.

Let us consider any permutation σ of the set A, that is a bijection σ : A −→ A.
It can be extended on all sets from the model by taking Bσ = {xσ : x ∈ B}. We
say that B is stable for σ if Bσ = B. For any set Z ⊆ A we say that a permutation
σ fixes Z if σ(a) = a, for every a ∈ Z.

Now we define S(A) a subuniverse of V (A) taking all sets B from V (A)
such that there is a finite Z ⊆ A such that for every permutation σ of the set A
which fixes Z, B is stable for σ. Of course all pure sets, having no atoms in their
transitive closures, are stable for any permutation of A, then all of them belong
to S(A). Additionally all finite and co–finite subsets of A belong to S(A). On the
other hand no infinite and co–infinite B ⊆ A belong to S(A). Because for any
finite Z ⊆ A we can find a, b ∈ A− Z such that a ∈ B and b 6∈ B, then we take a
transposition σ exchanging a and b and not moving anything else. σ fixes Z and
Bσ 6= B.

The next step is proving that S(A) is a model for ZFA provided V (A) is a
model for ZFA. The class S(A) would not contain any well ordering of A. Oth-
erwise, having a well ordering R on A we can split A into two disjoint sets B

1Some of the other topics are discussed in part 4 of this book.
2A very good monography of the topic can be found in [6].
3A good introduction to ZFA can be found in [5].
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containing even successors in the sense R and the remaining part containing odd
successors.

In this way we gave a sketchy proof of the following:

Theorem 1. If ZFA is consistent then neither AC nor TZ are provable in ZFA.

By refinement of the method of Fraenkel, Andrzej Mostowski proved the
following:

Theorem 2 ([10]). In Zermelo–Fraenkel set theory with atoms (ZFA) Zermelo theo-
rem, saying that every set can be well ordered, is independent of Ordering Principle,
saying that every set can be linearly ordered.

Later on he elaborated the method. His book [12] presents the results. Nowa-
days the basic construction is nowadays called Fraenkel–Mostowski permutation
models.

These prewar ideas strongly influenced later research in the school of Andrzej
Mostowski for many years.

1.2. Skolem arithmetic and direct products of theories
In 1952 Andrzej Mostowski published the paper ”On direct products of theories”
reprinted in [14]. It contains the first published proof of the theorem commonly
attributed to Thoralf Skolem, saying that first order arithmetic of multiplication
is complete and decidable.

Neither the idea nor the details of the proof are well known. In 1929 Mojżesz
Presburger published his paper presenting his proof of decidability of first order
arithmetic of addition [17]. The proof can be found in almost every handbook
of mathematical logic.4 It is one of the paradigmatic proofs by elimination of
quantifiers.

The structure (P<ω(N),∪,−, ∅) of finite sets of natural numbers with union
and difference has much more simpler first order theory TI = Th(P<ω(N),∪,−, ∅).
As a matter of fact this theory is simply the theory of nonprincipal maximal ideals
in atomic infinite boolean algebras.5

Well known axioms of first order Peano arithmetic PA, with 0, S,+,× as
primitive notions, are the following:

(PA1)∀x (x = 0 ≡ ¬∃y x = S(y),
(PA2)∀x, y (S(x) = S(y)⇒ x = y),
(PA3)∀x x+ 0 = x,
(PA4)∀x, y x+ S(y) = S(x+ y),
(PA5)∀x x× 0 = 0,
(PA6)∀x, y x× S(y) = (x× y) + x

4Professor Andrzej Grzegorczyk at least twice told me that Alfred Tarski decided that the result
by Presbuger was too weak for PhD. Undoubtedly intending this terrible mistake as a lesson for
future supervisors.
5A proper boolean algebra can be obtained by adding all the complements of the elements of an
ideal.
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and the induction axiom scheme, for each arithmetical formula
ϕ(x1, . . . , xn, y):

(PA7ϕ)∀x1, . . . , xn (ϕ(x1, . . . , xn, 0)∧ ∀y (ϕ(x1, . . . , xn, y) ⇒
ϕ(x1, . . . , xn, S(y)))⇒ ∀y ϕ(x1, . . . , xn, y)).

The arithmetic of addition, called also Presburger arithmetic, TP can be
axiomatized by (PA1) — (PA4) and (PA7ϕ) restricted to formulae with 0, S,+ as
only primitive notions.

The arithmetic of multiplication, called also Skolem arithmetic TS , cannot
be so easily extracted from axioms of PA. However it can be defined as the set
of all first order consequences of PA which contain only multiplication and all
quantifiers are of the form ∀x 6= 0 and ∃x 6= 06 On the other hand, we define TM
as the first order theory of the structure (N,×). Of course TS ⊆ TM .

Theories TI and TP allow elimination of quantifiers. In the paper ”On di-
rect products of theories” Andrzej Mostowski proves that this two methods give
elimination of quantifiers for TM . His theorem is essentially more general. It gives
elimination of quantifiers for TS as a corollary. It was generalized in the work [4].

However we are interested mainly in properties of TS . The method was elab-
orated for this case by Patrick Cegielski [1]. Cegielski gives also an axiomatic
characterization of Skolem arithmetic, see also [16]. However the argument is still
complicated.

The idea of the proof is based on so called Prime Factorization Theorem
which says that for each integer a > 0 there are uniquely determined a set of
prime divisors of a: Supp(a) = {q1 < q2 < . . . < qn} and a sequence of positive
integers a1, a2, . . . , an such that

a = qa11 qa22 . . . qann .

The result of multiplication of a by

b = rb11 r
b2
2 . . . rbmm

is
c = sc11 s

c2
2 . . . sckk ,

where Supp(b) = {r1 < r2 < . . . < rm}, Supp(c) = {s1 < s2 < . . . < sk},
Supp(c) = Supp(a) ∪ Supp(b) and for i = 1, 2, . . . , k the exponent ci is either the
sum of exponents ai′ + bi′′ , if si = qi′ = ri′′ , or ci is one of ai′ or bi′′ , if si divides
only one of a, b.

Therefore each model M = (U,×M ) of TM can be split into the model
(IM ,∩,−, ∅) for TI and the family of models (Mp)p∈PrimesM for TP , where
IM = {Supp(a) ⊆ PrimesM : a ∈ U} and Mp = {Component(p, a) : a ∈ U},
Component(p, a) is the greatest power of the prime p dividing a.

Reception of the proof of Andrzej Mostowski and later refinements is very
poor and in what follows we will discuss easier and less general argument for

6Zero element in TS is easy to define and inessential from the point of view of characterizing
models of this theory.
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completeness and decidability of TS . Because it is an axiomatic theory then it
suffices to prove its completeness.

Much easier proof was given by Nadel [15], who proved the completeness of
Skolem arithmetic by using Ehrefeucht–Fräıssé games, [3].7

Theorem 3. Any two models of TS are elementary equivalent.

The proof given by Nadel combines winning strategies of ∃–playerfor two
models of TI and two models of TP for obtaining the same for two models of TS .
As a byproduct it gives that TM ⊆ TS .

This can be done simply by proving in PA proper statements justifying pos-
sibility of needed representation. We give two examples of them.

Lemma 1 (Prime Factorization Theorem – a multiplicative version). In PA the
following statement is is provable:

∀x∀y (x = y ≡ ∀p ∈ Primes Component(p, x) = Component(p, y)).

Because the statement uses only multiplicative language then it is also provable in
TS.

Lemma 2 (Selection – a multiplicative version). For each arithmetical first oder
formula ϕ(x1, . . . , xn, y, z) The following statement is provable in PA:

∀x1, . . . , xn ∀b (∀p ∈ Supp(b)∃a ((Pow(p, a) ∧ ϕ(x1, . . . , xn, p, a))⇒

∃b′ (Supp(b) = Supp(b′) ∧ ∀p ∈ Supp(b′) ϕ(x1, . . . , xn, p, Component(p, b′)))).

If additionally ϕ is in multiplicative language of TS then the statement is also
provable in TS.

Proof. Let us fix a formula ϕ(x1, . . . , xn, y, z). Then we prove the statement in PA
by induction on the standard enumeration of primes p0, p1, p2, . . .. Firstly we take
any x1, . . . , xn, b.

We take as b0 any element such that Pow(p0, b0) ∧ ϕ(x1, . . . , xn, p0, b0),8
or b0 = 1 if ¬ p0 | b. Let us assume that ∀p ∈ Supp(b)∃a ((Pow(p, a) ∧
ϕ(x1, . . . , xn, p, a)).

Let us assume that bn is defined in such a way that ∀i ≤ n∀pi ∈
Supp(b′) ϕ(x1, . . . , xn, p, Component(pi, bn)).

If ¬ pn+1 | b then we take bn+1 = bn, otherwise – by the assumption –
we have a such that Pow(pn+1, a) ∧ ϕ(x1, . . . , xn, pn+1, a). In this case we take
bn+1 = bn × a. We stop at stage n when pn is the greatest prime in Supp(b), then
we take b′ = bn. �

7The method is currently a standard one and can be found in many textbooks of mathematical
logic. A good presentation of it can be found e.g. in [2]
8Pow(q, d) means that d is a power of a prime q.
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1.3. Generalized Quantifiers

Another very influential work by Andrzej Mostowski was presented in his paper
”On a generalization of quantifiers”[11]. The paper does not contain any hard
results, but it presents a new very influential idea of generalized quantifiers. Tradi-
tionally, in mathematics we have used two quantifiers: universal ∀ and existential
∃. In the Type Theory they have many interpretations in dependency to types of
variables bounded. However, restricting our attention to first order – elementary
language, they have unique interpretation.

1.3.1. Basic idea. Let us consider a model M with the universe U . Interpretations
of quantifiers ∀ and ∃ depend only on U . So we take

∀U = {A ⊆ U : U −A = ∅},

and
∃U = {A ⊆ U : A 6= ∅}.

Now for every formula ϕ(x) with one free variable x we have:

M |= Qx ϕ(x) if and only if {a ∈ U :M |= ϕ(a)} ∈ QU ,

for any of quantifiers Q = ∀,∃.
Are there more such quantifiers? Restricting our attention only to logical –

topic independent – notions, there are much more than two. Logicalness condition
for Q says that for any bijection f : U −→W and for any A ⊆ U :

A ∈ QU if and only if f(A) ∈ QW ,

where f(A) = {f(a) : a ∈ A}. Quantifiers satisfying this condition are de-
termined by classes of pairs of cardinal numbers, in the following sense KQ =
{(card(A), card(U − A)) : A ∈ QU}. For instance K∃ = {(κ1, κ2) : κ1 > 0}. On
the other hand QU can be obtained back from KQ as follows:

QU = {A ⊆ U : (card(A), card(U −A)) ∈ KQ}.

The basic notion of a generalized quantifier is a quantifier in the above sense
satisfying the logicalness condition. They are called also Mostowski quantifiers

Andrzej Mostowski observed that logics with such quantifiers hardly would
be axiomatizable. For instance the quantifier there are only finitely many – ∃<ℵ0 ,
defined as

∃<ℵ0
U = {A ⊆ U : card(A) < ℵ0},

allows finite axiomatization of the standard model of natural numbers, what means
that, by the Tarski undefinability of truth theorem, the set of theorems cannot be
arithmetical, therefore it is not axiomatizable.

The axiomatization can be given by (PA1) – (PA6) and instead of scheme
(PA7ϕ) we take ∀x ∃<ℵ0y y < x.9

9The ordering is defined by x ≤ y ≡ ∃z x+ z = y and x < y means x ≤ y ∧ x 6= y.
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Therefore, the result obtained by H. Jerome Keisler [7] giving an example
of axiomatizable logic was surprising. He gave a complete axiomatization for the
logic with the quantifier ∃>ℵ0 , defined as

∃>ℵ0
U = {A ⊆ U : card(A) > ℵ0}.

Let us consider the logic FO(Q) first order logic with an additional quanti-
fier Q interpreted as arbitrary Mostowski quantifier. It means that formulae are
interpreted in models of the form (M,QU ), where M is a usual model and U is its
universe.

Theorem 4 (Per Lindström, [9]). The set of all universally valid arithmetical for-
mulae in FO(Q) is not arithmetical and therefore not axiomatizable.

Proof. Let ϕ be a conjunction of (PA1) – (PA6) and the statement

ψ = ∀x(Qy y < x ≡ ¬Qy y < S(x)).

Let us observe that ψ says that Q gives different truth values on initial segments
determined by a and by S(a), for all a, what is possible only when these segments
are finite. Therefore for each arithmetical sentence ξ the conjunction (ϕ ∧ ξ) is
consistent in FO(Q) if and only if ξ is true in the standard model of natural
numbers.10 �

1.3.2. Lindström’s generalization. Currently the term generalized quantifiers is
used in the sense given by Per Lindström in [8]. For every finite sequence t =
(t1, . . . , tk) of positive integers, we define a generalized quantifier Q of type t as
follows:

• On a syntactic level, for each formulae ϕ1, . . . , ϕk, we have a new formula
Qx(ϕ1(x1), . . . , ϕk(xk)), where x = x1, . . . , xt, t = max(t1, . . . , tk) and xi =
x1, . . . , xti , for i = 1, . . . , k;

• On a semantic level, for each nonempty U the set QU contains k–tuples
(R1, . . . , Rk), where Ri ⊆ U ti , for i = 1, . . . , k. Additionally we assume that
the logicalness condition is satisfied, in the following sense: for each bijection
f : U −→W and for each k–tuple (R1, . . . , Rk):

(R1, . . . , Rk) ∈ QU if and only if (f(R1), . . . , f(Rk)) ∈ QW .

For a model M with the universe U we define M |= Qx(ϕ1(x1), . . . , ϕk(xk))

if and only if (ϕM,x1

1 , . . . , ϕM,xk

k ) ∈ QU , where ϕM,xi

i = {(a1, . . . , ati) ∈ U ti :M |=
ϕi(a1, . . . , ati)}, for i = 1, . . . , k.

Generalized quantifiers defined by Andrzej Mostowski are exactly Lind-
ström’s quantifiers of type (1).

10The argument given here is mine, but Per Lindström gave an argument in a similar style in a
conversation with Michał Krynicki and me [9].
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2. Old school and old ideas

Here I am starting an essay part of the paper, so I am changing to first person
style from, usual in science, plural majesty style.

The great project of foundations of mathematics started as both philosoph-
ical and mathematical project. Some very important for the project researchers,
as Bernard Bolzano and Bertrand Russell, were mainly philosophically motivated.
Others, like Gottlob Frege and David Hilbert, were basing on both philosophical
and mathematical traditions, which were for them not clearly separated. It is par-
ticularly striking in the case of Hilbert. He has got his hight position and influence
in mathematics by purely mathematical works. However his research program of
grounding foundations of mathematics by reduction to finitistic mathematics was
formulated and justified in philosophical spirit. There were also other influential lo-
gicians motivated from both sides, let me mention: Rudolf Carnap, Willard Quine,
Hilary Putnam and Jon Barwise.

In Poland two the most influential logicians of the first half of twentieth
century, Jan Łukasiewicz i Alfred Tarski, started with philosophical problems. Jan
Łukasiewicz started with the problem of justifying the basic logical laws and the
problem of determinism. Alfred Tarski started with the problem of defining truth.

These were old ideas. New ideas disappeared in philosophy. Some people in
Poland could think that the main reason was communistic dictature in years 1948–
1989. Andrzej Mostowski openly claimed that any philosophical discussions should
be removed from foundations of mathematics. The attitude can be justified by a
political situation. Philosophical faculties in Poland were dominated by the com-
munist party expositors.11 All this unpleasant things did not touch mathematics.
Stalin, who indirectly governed in Poland in 1945–1953, thought that mathematics
and physics should be independent, everything else have to be penetrated by the
communist party.

It is worth to mention that this attitude was not accepted by by his oldest
students Andrzej Grzegorczyk and Helena Rasiowa. Andrzej Grzegorczyk went to
philosophy in 1970–ties, and Helena Rasiowa strongly supported joining philosoph-
ical and mathematical interests.12 However for all later students the attitude was
obvious and acceptable.

In mathematics philosophy was replaced by bed philosophy and in philosophy
philosophy was replaced by even worse philosophy.

What is important the same thing happened in many countries without com-
munistic dictatorship. I think that the main reason is the idea of autonomy of
faculties. Why we should confront relevance and importance of our results with
people thinking in other way? Of course philosophy is loosing in this confrontation.
However mathematics is loosing either.

11I remember, when I was teenager, a comment of my father Andrzej Włodzimierz Mostowski
about the book about philosophy and non–classical logics. He said: This is neither on philosophy
nor on logic, this is about who should be relagated and who can keep his position.
12I was her student in 1982–1983.
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3. The old school and new ideas — computations

The other weakness of the school of Andrzej Mostowski was not absorbing a new
idea of computability. Andrzej Mostowski thought of computability not in terms
of algorithms, but in a sense of arithmetically definable sets. The only his student
really thinking in terms of computability was Andrzej Grzegorczyk. Reception
of his ideas was very poor because he was far from the center. The center was
Andrzej Mostowski. The department of Mathematical Logic guided by Helena
Rasiowa reoriented to computer science in late 1970–ties.13

In these times the old department of foundation of mathematics practically
disappeared. The department of Helena Rasiowa was quickly developing and in
majority passed to the institute of computer science preserving the only strong
group in logic at mathematical faculty. It is symbolic that the main results estab-
lishing position of this group in the new faculty were results related to Büchi–Rabin
automata — the topic which was introduced in Poland by Andrzej Włodzimerz
Mostowski.14

4. What for philosophy?

There is a common opinion in mathematics that a good achievement is just a
difficult proof. Joining it with a view that axiomatically defined ZFC is a good
basis for mathematics means that mathematics is a game for finding difficult proofs
from ZF. In other words all mathematical questions are of the form: is ϕ provable
from ZFC. More difficult proof, better result. Of course we know that ZFC is not
complete. Therefore we allow questions of the form: is ϕ independent of ZFC.

I have asked a few mathematicians whether they would accept their activity
as playing such a game. Nobody answered yes. Mathematicians lost their philo-
sophical sensitivity. This is the only explanation of these contradictory views. They
need serious philosophical thinking.

On the other hand philosophy, without real interaction with current science
starts to be inferile. It is going to problems from its history. So working on history
of its history, and so on.

5. Who is your master?

In late 1970–ties, when I was a young student, Krzysztof Maurin15 asked me ”who
is your master?”. I was surprised, I did not know what to answer. After a while

13Andrzej Salwicki told that they did not know works by Andrzej Grzegorczyk. Only later on
they recognized his works as relevant and important.
14He is my father, and younger cousin of Andrzej Mostowski. Similarly as sons of Andrzej
Mostowski: Tadeusz and Jan, he lived in a shadow of Andrzej Mostowski. I was the the first
person in the family who took the topics of Andrzej Mostowski.
15He was in this time very eminent professor working in mathematical analysis and mathematical
physics. He was also deeply interested in philosophy of mathematics.
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I answered ”Jan Łukasiewicz”. Łukasiewicz has died in 1956. After a few years I
would answer ”Alfred Tarski”, but he died either. Never in my life I met anyone
of them. After some time I realized that I could not honestly answer for such a
question. I would say that learned from many people, frequently older ones, but I
learned also a lot from younger people.

Later on I was asked by my colleagues for giving them a problem to work
on. When I was younger I answered ”if you do not know it then you are not ready
to work in science”. Later on I have change my mind. By having a good problem
and a good support you get a few years in advance in your scientific carrier. This
was probably what I lost in my life.

Summarizing, we need masters, more masters than one.
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Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt in Comptes Rendus du I congres de Mathématiciens des Pays Slaves,
Warszawa 1929, pp. 92—101, 1929.

Marcin Mostowski
Department of logic
Institute of Philosophy
Jagiellonian University
e-mail: marcin.mostowski@uj.edu.pl


