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1. Introduction

In the modern literature Kazimierz Ajdukiewicz is commonly accepted as the
father of categorial grammars: formal grammars assigning logical types to expres-
sions. His seminal paper [4] provided a clear idea of these grammars. Ajdukiewicz
acknowledged an impact of E. Husserl and S. Leśniewski. From Husserl [31] he
took the idea of semantical categories which can be defined in terms of mutual
substitution of expressions in meaningful or sentential contexts. From Leśniewski
he took a classification of categories in basic categories and functor categories. Here
I cannot cite any single publication of S. Leśniewski, since in his works he never
wrote a longer passage on this matter. Ajdukiewicz and other authors cite [45],
but this paper on new foundations of mathematics merely contains short notes on
‘the theory of semantical categories’; different logical symbols are characterized as
functors of a particular category (no special symbols for categories are introduced).
It seems that more elaborated considerations only appeared in Leśniewski’s oral
lectures.

Ajdukiewicz introduced a system of indices for categories. This system is em-
ployed in his procedure for verifying the ‘syntactic connexion’ of expressions. In
[4] he writes: “We shall base our work here on the relevant results of Leśniewski,
adding on our part a symbolism, in principle applicable to almost all languages
[and enabling us to build a calculus], which makes it possible to formally define
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and examine the syntactic connexion of a word pattern.”1 (The passage in brack-
ets has been omitted in the English translation in [6]; I add it, since the word
‘calculus’ is quite important.) In fact, the indices for categories were introduced in
Ajdukiewicz’s earlier paper [3], where they were used in a semantical analysis of
the problem of universals.

Let me briefly comment on terminology. The indices for categories will be
called types, according to modern standards in logic. Categories can be under-
stood as some sets of expressions or sets of ontological objects (having a common
type). Although Leśniewski and Ajdukiewicz use the term ‘semantical category’
(after Husserl), the term ‘syntactic(al) category’ is more appropriate. This was
noticed by Ajdukiewicz [5]: “The concept of semantical categories must be clearly
distinguished from the concept of syntactical categories. The term ‘semantical
category’ was introduced for the first time by Husserl; however, the concept he
associated with it would correspond better to the term ‘syntactical category’. For
Husserl pointed out that the expressions of a language may be classified according
to the role they can play within a sentence. He defined, therefore, the categories
from the syntactical viewpoint.” Ajdukiewicz [5] outlined a theory of semantical
categories: the type of an expression is determined by the ontological type of the
denotation of this expression. The first semantical interpretation of [4] is due to
Bocheński [13].

The connections of syntactic (semantic) types with categories defined by mu-
tual substitution are by no way obvious, nor simple. They are quite tight for
deterministic (or: rigid) grammars which assign at most one type to one expres-
sion, but become less regular for categorially ambiguous grammars. A thorough
discussion of this topic can be found in [19] .

The present paper focuses on categorial grammars: how they developed from
the origin in [4] to their modern forms. Categorial grammars are also called ‘type
grammars’, and the latter term seems better. The classification of expressions in
categories appears in different grammar formalisms (e.g. phrase structure gram-
mars), whereas logical types assigned to expressions are characteristic of the gram-
mars considered here. To emphasize this Morrill [51] and others use an even more
explicit term ‘type logical grammar’. In the present paper both terms are used:
the former in traditional names of grammars, the latter in general considerations.

The impact of [4] can be seen in several areas of formal linguistics and log-
ical philosophy of language. Type grammars belong to formal linguistics, since
their main intention is to describe natural language. They are closely related to
type-theoretic semantics of natural language, initiated by Monatgue [46], with an
explicit reference to [4], and extensively studied by many authors as Montague
Grammar. Some other works may be counted to the logical turn: they study types
and categories in formal languages of logic and mathematics. This direction was

1All citations from Ajdukiewicz are based on the English translations of Ajdukiewicz’s original
papers, collected in [6].
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represented in Poland by Suszko [62, 63], Wybraniec-Skardowska [67] and oth-
ers. Suszko elaborated a formal framework for syntax and semantics of higher-
order languages. Wybraniec-Skardowska presented a general theory of ‘categorial
languages’ with a distinction between expression-tokens and abstract expressions
(this theory, however, does not directly address natural language). Ta lasiewicz [64]
provided a philosophical analysis of Ajdukiewicz’s approach, applied to natural
language, with an interpretation in terms of situation semantics,

It is a bit surprising that just the linguistic turn leads to new logical calculi
(Lambek logics) and models (residuated algebras), whereas the logical turn usually
focuses on some standard logical systems (higher-order logics, type theories). To
keep this survey in a reasonable size I will mainly write on the new logics elaborated
for type grammars and only briefly note some links with other developments.
Montague Grammar and its descendants cannot be discussed in detail; the reader
is referred to [12] and the items cited there.

This survey is addressed to a wide community, not necessarily experts in
type grammars. Therefore I omit mathematical subtleties. I do not even discuss
all important mathematical results in this area; I only briefly note some of them to
clarify the main ideas. Nonetheless an acquaintance with general logic and formal
linguistics may help the reader to follow the text. I provide a couple of linguistic
examples, but all are quite simple. The reader is referred to [50, 49, 51, 52, 44] for
a more advanced linguistic material.

Section 2 is concerned with basic categorial grammars, a framework directly
related to Ajdukiewicz’s proposal (modified in [8]). Section 3 discusses the Lambek
calculus and several analogous systems with a particular emphasis on their role in
type grammars. At the end, I defend the view that Lambek logics are important,
general logics of syntactic and semantic types (besides other applications), but
not as good for efficient parsing. An optimal strategy seems the following: (1) to
apply Lambek logics in metatheory and on the lexical level, (2) to preserve the
Ajdukiewicz system as a parsing procedure for compound expressions.

2. Basic categorial grammars

Ajdukiewicz (following Leśniewski) distinguishes two basic categories: sentence
(type s) and name (type n), but stipulates that in general “nothing could be
decided about the number and kind of basic semantic [categories] and functor
categories, since these may vary in different languages.” The types of functor
categories have the form of fractions:

α

β1 . . . βn
;

an expression of this type with arguments of type β1, . . . , βn forms a compound
expression of type α. For example, an intransitive verb is of type s

n , a transitive
verb of type s

n n , a sentential connective of type s
s s , an adverb of type α

α for α = s
n ,

and so on.
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The procedure of checking the ‘syntactic connexion’ of a compound expression
is designed as follows. First, the expression is rewritten in prefix notation: each
functor directly precedes its arguments. So one writes likes John wine instead
of John likes wine and hardly works John instead of John works hardly (my
examples). Second, one considers the sequence of types corresponding to the words
of the rearranged expression. For these two examples one obtains the sequences:

s

n n
, n, n and

s
n
s
n

,
s

n
, n.

Third, one reduces a block of adjacent types:
α

β1 . . . βn
, β1, . . . , βn

to α and repeats this step as many times, as possible. If this reduction ends in a
single type, the expression is qualified to be ‘syntactically connected’ and assigned
the resulting type. The Ajdukiewicz reduction procedure applied to our examples
yields:

s

n n
, n, n ⇒ s in one step,

s
n
s
n

,
s

n
, n ⇒ s

n
, n ⇒ s in two steps.

So both expressions are syntactically connected (of type s). In fact, Ajdukiewicz’s
original procedure was more restrictive: at each step one reduces the left-most
occurrence of a reducible pattern, but this constraint narrows its applications [17].

This approach reveals two characteristic components of modern type gram-
mars: (1) the type lexicon, i.e. an assignment of types to words, (2) the type pro-
cessing machinery, i.e. a procedure of checking the grammatical correctness of
arbitrary expressions and at the same time deriving types of them. In terms of
contemporary computational linguistics, (2) is a parsing procedure. Ajdukiewicz
was the first who clearly formulated the problem of parsing and proposed a pars-
ing algorithm (twenty years before mathematical linguistics was founded by Noam
Chomsky).

The Ajdukiewicz procedure requires the rewriting of the parsed expression in
prefix notation. In practice this restricts its applications to some formal languages.
In fact Ajdukiewicz acknowledged that one of his goals was a generalization of the
parenthesis-free notation, elaborated by J.  Lukasiewicz for propositional logics,
toward richer formal languages. On the other hand, his examples came from nat-
ural languages, and he expected a wide applicability of his method. Probably he
admitted various modifications of the original procedure, when applied in practice.

Bar-Hillel [7] adjusted this approach to natural language. He introduced di-
rectional types of the form:

α

β1 . . . βm; γ1 . . . γn
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and the reduction procedure based on the rule:

β1, . . . , βm,
α

β1 . . . βm; γ1 . . . γn
, γ1, . . . , γn ⇒ α.

Now transitive verbs are assigned type s
n;n , and John likes Mary is parsed as:

n,
s

n; n
, n ⇒ s in one step.

In [8], this approach was modified. After Lambek [40], functor types were
restricted to α\β and α/β. An expression of type α\β (resp. β/α) with an argument
of type α on the left (resp. on the right) forms a compound expression of type β.
So α\β corresponds to β

α; in the former notation, α/β to α
;β , and the fraction α

β;γ is
represented as β\(α/γ) or (β\α)/γ. The representation of many-argument types by
(nested) one-argument types is closely related to ‘currying’, i.e. the representation
of many-argument functions by one-argument functions of higher order, a routine
in modern type theories.

The reduction procedure is based on two rules:

(RED.1) α, α\β ⇒ β, (RED.2) α/β, β ⇒ α .

In [8], a categorial grammar is formally defined as a triple G = (Σ, I, s)
such that Σ is a nonempty finite set, I is a finite relation between elements of
Σ and types, and s is an atomic type. The elements of Σ are interpreted as the
words of a natural language (then Σ is referred to as the lexicon) or symbols of
a formal language (then Σ is referred to as the alphabet). Nowadays I is called
the type lexicon or the initial type assignment. Often I is represented as a map
which assigns finite sets of types to elements of Σ. In examples we write v : α for
α ∈ I(v). One refers to s as the designated type. One admits an arbitrary finite set
of atomic types.

Finite sequences of elements of Σ are called strings (on Σ). The empty string
is denoted by ε. The string (v1, . . . , vn) is usually written as v1 . . . vn. One says that
G assigns type α to the string v1 . . . vn, if there exist types α1, . . . , αn, belonging
to I(v1), . . . , I(vn), respectively, such that the sequence α1, . . . , αn reduces to α by
finitely many applications of rules (RED.1), (RED.2). The language of G consists
of all strings on Σ which are assigned type s by G.

In the modern literature, categorial grammars in the sense of [8] are called
basic categorial grammars (BCGs) or: classical categorial grammars, AB-grammars
(a credit to Ajdukiewicz and Bar-Hillel).

The main mathematical theorem of [8] establishes the weak equivalence of
BCGs and Chomsky’s (ε−free) context-free grammars (CFGs). Recall that a CFG
is defined as a quadruple G = (Σ, N, s, P ) such that Σ and N are disjoint finite
sets (whose elements are treated as simple symbols), s ∈ N , and P is a finite set
of pairs (a, x), where a ∈ N and x is a string on Σ ∪N . The elements of Σ (resp.
N) are called terminal symbols (resp. nonterminal symbols or variables), and s
is called the start symbol. The pairs in P are called production rules. one writes
a 7→ x for (a, x) and interprets it as a rewriting rule: the string yaz can be rewritten
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as yxz according to this rule (by xy one denotes the concatenation of x and y).
The language of G (or: generated by G) consists of all strings on Σ which can be
derived from s by finitely many applications of the production rules. A CFG is
ε−free, if it contains no nullary rule of the form a 7→ ε. The equivalence theorem
states that BCGs and ε−free CFGs generate the same class of languages. More
precisely, for any BCG G there exists an ε−free CFG G′ such that L(G) = L(G′),
and conversely.

The first part of this theorem can easily be proved: a BCG G = (Σ, I, s)
generates the same language as the CFG with the terminal alphabet Σ, the non-
terminal alphabet consisting of all types involved in G and their subtypes (i.e. sub-
terms), the start symbol s, and the production rules reversing (RED.1), (RED.2)
(restricted to the types in the nonterminal alphabet) plus the lexical rules α 7→ v,
for α ∈ I(v). The second part is more difficult; the proof in [8] yields, in fact, the
Greibach normal form theorem for CFGs (independently proved a few years later).

In opposition to CFGs, BCGs are lexical : the whole information on the de-
scribed language is contained in the type lexicon, whereas the parsing procedure
is independent of this particular language (it employs the language-independent
rules (RED.1), (RED.2)). This is not the case for CFGs. For instance, a standard
non-lexical rule for English is s 7→ np, vp (a sentence consists of a noun phrase and
a verb phrase). The lexicality is a characteristic feature of all type grammars, con-
sidered nowadays. Sometimes it is convenient to admit certain simple non-lexical
rules, e.g. pn ⇒ np (a proper noun is a noun phrase), but one tends to eliminate
them, whenever possible.

The nonterminal symbols of a CFG can be interpreted as names of syntactic
categories, like types in a BCG. Types, however, can be compound terms, not just
simple symbols. This is significant for lexicality and makes it possible to study
logics of types, expressing deeper relations between types.

Although CFGs are weakly equivalent to BCGs, the strong equivalence does
not hold; this means that the structured languages differ for the two classes of
grammars. For a CFG, each derivation of a string from a nonterminal symbol
determines a unique phrase structure of this string. For instance, the grammar
with production rules:

s 7→ np, vp vp 7→ tv, np

np 7→ John np 7→ tee tv 7→ drinks
admits the derivation:

s ⇒ np, vp ⇒ np, tv, np ⇒ · · · ⇒ John, drinks, tee

which yields the phrase structure (John (drinks tee)) or, more explicitly, (Johnnp

(drinkstv teenp)vp)s. These phrase structures can be depicted as binary trees; see
Figure 1.

Similarly, each reduction in a BCG gives rise to a unique phrase structure of
the input string. With the type lexicon:

John : np drinks : (np\s)/np tee : np
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one obtains the reduction:

np, (np\s)/np, np ⇒ np, np\s ⇒ s ,

which yields the same phrase structure (John (drinks tee)). We need an auxiliary
notion. The degree of type α, denoted by d(α), is defined as follows: d(α) = 0 if α
is atomic, d(α\β) = d(β/α) = d(β) + 1. For any phrase structure generated by a
BCG G, depicted as a tree, and for any node of this tree, the length of shortest
paths from this node to a leaf is not greater than the maximal degree of types
involved in G. Therefore a BCG cannot generate languages of phrase structures
with arbitrarily long shortest paths from a node to a leaf. On the contrary, a CFG
can generate such languages.

For instance, the CFG with rules s 7→ s, s and s 7→ 0 generates all possible
phrase structures on the alphabet {0}. The BCG with the type lexicon 0 : s/s,
0 : s generates the same language of strings, which consists of all nonempty strings
on {0}, but not the same language of phrase structures. One only gets the phrase
structures: 0, (00), (0(00)), (0(0(00))), and so on, but not ((00)0).

For BCGs, one also considers functor-argument structures (fa-structures),
i.e. phrase structures augmented with functor markers. For the BCG considered
above, the phrase structure (John (drinks tee)) can be refined to the fa-structure
(John (drinks tee)1)2, which means that (drinks tee) is the functor in the whole
structure and drinks is the functor in (drinks tee). Every reduction in a BCG
determines a unique fa-structure of the recognized string. The languages of fa-
structures and phrase structures take an essential part in the theory of BCGs;
see [15, 19]. In particular, syntactic categories can be defined as certain sets of
fa-structures rather than strings, which results in a more elegant theory.

The type lexicon of a BCG can assign several types to one word. This reflects
the syntactic ambiguity of words in natural language. For instance, and appears
as a sentential connective, but also as a noun connective, verb connective, adverb
connective, and others. As a rule, in logical and mathematical formalisms one
symbol can be assigned a unique type, which completely characterizes the syntactic
role of this symbol. These languages can be described by rigid (or: deterministic)
BCGs (I is a function from Σ to the set of types).
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Worthy of noting, not all languages of formal logic can be described by rigid
BCGs. The standard example is the language of (type-free) lambda calculus. Also
in the language of first-order logic, a unary function symbol f requires two types
t/iv, t/t, where iv is the type of individual variables and t of terms (quantifiers
are typed (s/s)/iv, where s is the type of formulas). Alternatively, one can assign
only t/t to f and admit a non-lexical rule iv ⇒ t.

The type of quantifiers, given above, adequately characterizes their role in the
syntax of first-order logic (in modern setting): the quantifier followed by a variable,
next by a formula, yields a formula. It is also fully compatible with Tarskian
semantics for this logic. It, however, does not express the variable-binding role of
quantifiers. The final part of [4] is devoted to the special status of variable-binding
operators, and several authors continue this issue; see [62, 63, 53, 67]. I do not
discuss this matter here, since it goes too far from the main topics of this paper.

One of the leitmotives of type grammars is a close relationship between syn-
tax and semantics (the dictum syntax mirrors ontology). I have already noted that
Bocheński [13] proposed the semantical interpretation of the theory of Leśniewski
and Ajdukiewicz, and this turn was adopted by Ajdukiewicz [5]. According to the
latter, the basic types are i (individual) and w (truth value; ‘value’ corresponds
to Polish ‘wartość’ and German ‘Wert’). Intransitive verbs are typed w

i , as they
denote functions from the set of individuals to the set of truth values, transitive
verbs w

i i , as they denote two-argument functions of this kind, (binary) sentential
connectives w

w w , as they denote binary truth-value functions, and so on. [5] brings
a radical idea of a purely flectional language: the types of words only account for se-
mantical categories of these words (i.e. the ontological status of their denotations),
whereas their syntactic roles are described by certain new indices, indicating the
position of these words in syntactic trees (some representations of fa-structures).
This idea seems very interesting, but the symbolism, proposed in [5], has a limited
value, since the new indices show the positions of words in one particular tree, not
in any well-formed syntactic tree, containing the given word.

On the other hand, the semantical interpretation is quite fundamental and -
modulo terminology and notation - has been commonly adopted in modern type-
theoretic semantics. Syntactic types are translated into semantic types: atomic
types and compound types α → β, where α, β are simpler types. Each atomic
type p corresponds to a semantic domain (or: ontological category) Dp. One defines
Dα→β as the set of all functions from Dα to Dβ . For instance, s is translated into
t (the type of truth values) and n into e (the type of entities). Let α• denote the
translation of α. One recursively defines:

(α\β)• = (β/α)• = α• → β•.

So n\s is translated into e → t (the type of sets of entities, identified with their
characteristic functions), s/(n\s) into (e → t) → t (the type of families of sets of
entities), and so on. The latter agrees with the interpretation of complete noun
phrases as generalized quantifiers; see van Benthem [10].
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In semantics, the reduction rules (RED.1), (RED.2) can be interpreted as
the application of a function f ∈ Dα•→β• to an argument a ∈ Dα• , which yields
f(a) ∈ Dβ• . Thus, given some fixed denotations of all words of the parsed expres-
sion, whose semantic types correspond to their syntactic types, as above, one can
determine the denotation of this expression by the (iterated) application of func-
tions to their arguments, following the syntactic reduction procedure. This fully
agrees with the principle of compositionality, a central idea of logical semantics.

3. Lambek Calculus

3.1. Basic systems

An essential refinement of BCGs is due to Lambek [40]. His Syntactic Calculus,
nowadays called Lambek Calculus and denoted by L, is regarded as a basic type
logic. Lambek presented his system as an improvement of BCGs: “[...] this paper
is concerned with a development of the technique of Ajdukiewicz and Bar-Hillel in
a mathematical direction. We introduce a calculus of types, which is related to the
well-known calculus of residuals. The decision procedure for this system is solved
affirmatively, following a procedure first proposed by Gentzen for the intuitionistic
propositional calculus.”

Types are built from atomic types by \, / and · (product; some authors write
⊗). An axiomatization of L employs simple sequents of the form α ⇒ β, where
α, β are types. L admits the following axioms and inference rules.

(Id) α ⇒ α

(A.1) (α · β) · γ ⇒ α · (β · γ) (A.2) α · (β · γ) ⇒ (α · β) · γ

(Res.1)
α · β ⇒ γ

β ⇒ α\γ
(Res.2)

α · β ⇒ γ

α ⇒ γ/β

(Cut.1)
α ⇒ β β ⇒ γ

α ⇒ γ

The double line in (Res.1), (Res.2) means that these rules can be used in both
directions: top-down and bottom-up.

By dropping the associativity axioms (A.1), (A.2), one obtains Nonassocia-
tive Lambek Calculus (NL), due to Lambek [41]. The counterparts of (RED.1),
(RED.2):

(Red.1) α · (α\β) ⇒ β , (Red.2) (α/β) · β ⇒ α

are provable in NL, using (Id), (Res.1), (Res.2). We, however, obtain (infinitely)
many other laws. Here are some examples.

: (L1) α ⇒ (β/α)\β and α ⇒ β/(α\β),
: (L2) α ⇒ β\(β · α) and α ⇒ (α · β)/β,
: (L3) (α\β) · (β\γ) ⇒ α\γ and (α/β) · (β/γ) ⇒ α/γ,
: (L4) α\β ⇒ (γ\β)\(γ\α) and α/β ⇒ (α/γ)/(β/γ),
: (L5) (α\β)/γ ⇔ α\(β/γ) (⇔ stands for both ⇒ and ⇐).
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(L1), (L2) are provable in NL, but (L3), (L4), (L5) in L only. Other laws can
be obtained, by using the monotonicity rules: from α ⇒ β infer γ · α ⇒ γ · β,
α · γ ⇒ β · γ, γ\α ⇒ γ\β, β\γ ⇒ α\γ, α/γ ⇒ β/γ, γ/β ⇒ γ/α, which are
derivable in both systems.

The most general algebraic models of NL are residuated groupoids, i.e. ordered
algebras (A, ·, \, /,≤) such that (A,≤) is a partially ordered set, and ·, \, / are
binary operations on A, satisfying the residuation laws:

(RES) a · b ≤ c iff b ≤ a\c iff a ≤ c/b, for all a, b, c ∈ A .

The operations \, / are called the residual operations for product. Residuated semi-
groups are residuated groupoids such that · is associative; they are models for L.
Both systems are strongly complete with respect to the corresponding models: the
sequents provable in the system from a set of nonlogical hypotheses are precisely
those sequents which are true in all models, for all valuations µ, satisfying the
hypotheses. α ⇒ β is true for µ, if µ(α) ≤ µ(β).

According to Lambek [40], the intended models for L are language models,
i.e. some algebras of languages (by a language one means a set of strings). By Σ+

we denote the set of all nonempty strings on Σ. For L1, L2 ⊆ Σ+, one defines:

L1 · L2 = {xy : x ∈ L1, y ∈ L2} ,

L1\L2 = {y ∈ Σ+ : xy ∈ L2 for any x ∈ L1},
L1/L2 = {x ∈ Σ+ : xy ∈ L1 for any y ∈ L2},

where xy denotes the concatenation of strings x and y. It is easy to show that
the powerset of Σ+ with ·, \, / defined as above and inclusion as the order, is a
residuated semigroup. α ⇒ β is true for µ in this model if and only if µ(α) ⊆ µ(β)
(equivalently: every string of type α is of type β). The term ‘language model’ is
due to Pentus [56]; this paper shows the weak completeness of L with respect to
language models (the sequents provable in L are precisely those which are valid in
all language models). The strong completeness does not hold, but it holds for the
product-free L [14].

Analogously, the intended models for NL are algebras of languages consisting
of phrase structures. Let ΣP denote the set of all phrase structures on Σ. On the
powerset of ΣP one defines ·, \, / as above except that Σ+ is replaced by ΣP and
xy by (x, y). The weak and the strong completeness (with respect to these models)
hold for the product-free fragment of NL only [25, 36].

The intended models exhibit Lambek’s interpretation of categories, which is
not the same as in BCGs. For a BCG, the category of type α consists of all (struc-
tured) expressions which are assigned this type by the grammar. According to
Lambek, the basic categories, i.e. those which are assigned atomic types, generate
all other categories by operations ·, \, /, interpreted in the algebra of languages.
In particular, if y is of type α\β (resp. β/α), then, for any x of type α, xy (resp.
yx) is of type β in a BCG. Lambek replaces ‘if . . . then’ by ‘if and only if’. This
is an essential difference; it leads to new reduction patterns, like (L1)-(L5), not
admitted in BCGs.
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This novel understanding of types caused, probably, a relatively small im-
pact of Lambek’s approach on his contemporaries. Only in the 1980-ties there
began more systematic studies in Lambek calculi and their role in type grammars
and type-theoretic semantics, initiated by W. Zielonka and the present author in
Poznań and J. van Benthem and his students (especially M. Moortgat) in Ams-
terdam. This research was reported in two collection volumes [54, 21]; the second
one also contains reprints of some earlier papers. The books [15, 47] elaborate on
logical and algebraic properties of Lambek calculi and grammars.

Lambek grammars are defined like BCGs except that the reduction procedure
is replaced with the provability in L, NL or a related system. One employs sequents
of the form α1, . . . , αn ⇒ β; in algebras, each comma is interpreted as product.
For nonassociative systems, the antecedents of sequents take the form of bracketed
sequences, e.g. (α, (β, γ)), which is different from ((α, β), γ). So (Red.1), (Red.2)
can be written as (RED.1), (RED.2), and similarly for other laws. Warning:
(RED.1), (RED.2) have been called reduction rules in Section 2, but now the term
‘rule’ is reserved for inference rules of type logics, e.g. (Res.1), (Res.2), (Cut.1),
whereas the provable sequents are referred to as laws.

Both L and NL can be presented as sequent systems [40, 41]. For L, the
axioms are (Id) and the inference rules are as follows (Γ and ∆ stand for finite,
possibly empty, sequences of types).

(· ⇒)
Γ, α, β, Γ′ ⇒ γ

Γ, α · β, Γ′ ⇒ γ
(⇒ ·) Γ ⇒ α ∆ ⇒ β

Γ, ∆ ⇒ α · β

(\ ⇒)
Γ, β, Γ′ ⇒ γ ∆ ⇒ α

Γ, ∆, α\β, Γ′ ⇒ γ
(⇒ \) α, Γ ⇒ β

Γ ⇒ α\β

(/ ⇒)
Γ, α, Γ′ ⇒ γ ∆ ⇒ β

Γ, α/β, ∆, Γ′ ⇒ γ
(⇒ /)

Γ, β ⇒ α

Γ ⇒ α/β

(Cut)
Γ, α, Γ′ ⇒ β ∆ ⇒ α

Γ, ∆, Γ′ ⇒ β

One assumes that Γ is nonempty in (⇒ \), (⇒ /). In sequents, one omits outer
parentheses of antecedent sequences and writes Γ, ∆ for the concatenation of Γ
and ∆.

The sequent system for NL is similar. The antecedents of sequents are brack-
eted sequences of types, hence all rules look a bit differently; see [15, 49].

Clearly these systems are certain intuitionistic sequent systems, types play
the role of formulas, and atomic types of variables (or nonlogical constants). The
rules (· ⇒)-(⇒ /) are the introduction rules for connectives, and (Cut) is the cut
rule.

By dropping (Cut), one obtains the cut-free (sequent system for) L. Lambek
[40] proved the cut elimination theorems for L (and in [41] for NL): every provable
sequent is provable in the cut-free system. As a consequence, both systems possess
the subformula property : every provable sequent possesses a proof such that each
formula appearing in this proof is a subformula of a formula occurring in this
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sequent. Since, additionally, each introduction rule increases the size of sequents,
then the provability in either system is decidable. It is easy to extract language-
restricted fragments. For instance, the product-free fragment admits product-free
formulas only and drops rules (· ⇒), (⇒ ·). L is a conservative extension of its
language-restricted fragments, and similarly for NL.

The product-free L, restricted to (Id), (\ ⇒) and (/ ⇒) ((Cut) is admissible),
yields precisely the correct reduction patterns of BCGs. This system is sometimes
denoted by AB. L is much stronger than AB, but both systems coincide for sequents
of the form α1, . . . , αn ⇒ p such that p is an atom and no αi contains a compound
type on the argument place. In other words, the order of each αi is at most 1. The
order of α, denoted by o(α), is recursively defined as follows: o(p) = 0 for atomic
p,

o(α\β) = o(β/α) = max(o(β), o(α) + 1), o(α · β) = max(o(α), o(β)).

For example, p\q, p\(q\r), (p\q)/r are of order 1, p/(q\p) is of order 2, and so on
(p, q, r are atoms). The product-free L is stronger than any extension of AB by
finitely many new reduction patterns, provable in L [69].

[8] shows that every ε−free CFG G is equivalent to a BCG G′ with all types of
order at most 1. By the above, the language of G′ does not change, if one replaces
AB by L. Consequently, every ε−free CFG is equivalent to a Lambek grammar.
The converse holds as well [55]. Analogous results for NL were obtained in [15, 37].

Due to new laws, Lambek grammars provide a more flexible description of
natural language. We consider atomic types s, n, as above, and n∗ for plural nouns.
In BCGs we get:

: 1. John likes Jane. n, (n\s)/n, n ⇒ s.
: 2. John works here. n, n\s, s\s ⇒ s.
: 3. John never works. n, (n\s)/(n\s), n\s ⇒ s.
: 4. John works for Jane. n, n\s, (s\s)/n, n ⇒ s.
: 5. John works and Jane rests. n, n\s, (s\s)/s, n, n\s ⇒ s.
: 6. men work. n∗, n∗\s ⇒ s.
: 7. poor men work. n∗/n∗, n∗, n∗\s ⇒ s.
: 8. men works. n∗, n\s 6⇒ s.
: 9. John work. n, n∗\s 6⇒ s.

Here 6⇒ means that the sequent is not provable in AB. The sequents in 8, 9 are
unprovable in L, either.

Now assign s/(n\s) to he and (s/n)\s to her; We abbreviate these types
as nps and npo, respectively, since they correspond to (singular) noun phrase as
subject and noun phrase as object.

: 10. he likes Jane. s/(n\s), (n\s)/n, n ⇒ s.
: 11. John likes her. n, n\(s/n), (s/n)\s ⇒ s.
: 12. he likes her. s/(n\s), (n\s)/n, (s/n)\s 6⇒ s.
: 13. John works for her. n, n\s, (s\s)/n, (s/n)\s 6⇒ s.
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The sequent in 12 remains unprovable in AB, if even one replaces (n\s)/n by
n\(s/n). In L, these two types are equivalent, by (L5), and this sequent is provable:
use (Red.1) s/n, (s/n)\s ⇒ s, (L3) (to the first and the second type of 12) and
(Cut). Also the sequent in 13 is provable in L. Notice that the student follows
the teacher can be parsed like 12 and John works for a friend like 13 (assign
nc to common nouns and nps/nc, npo/nc to articles).

These examples, similar to those in [40], well illustrate the power of Lambek
grammars. In a BCG we need at least two types of likes (see 10, 11); they are
equivalent in L, hence only one of them is sufficient. To parse 12 in a BCG we need
additional types of words, e.g. (s/n)/((n\s)/n) of he; s/(n\s) ⇒ (s/n)/((n\s)/n)
is an instance of (L4), hence s/(n\s) is sufficient in a Lambek grammar. Even in
NL one proves n ⇒ nps, n ⇒ npo as instances of (L1). This shows that L provides
some logical transformations of types and explains certain syntactic ambiguities
of expressions. Of course, not all; we still need n\s and n∗\s for worked, n/n and
n∗/n∗ for poor.

Only four atomic types appear in these examples. Realistic grammars for a
natural language employ much more atoms. Lambek [44] uses 33 atomic types for
a fragment of English, described by a pregroup grammar (see 3.2.4). We list some
of them.

π = subject
π1 = first person singular subject
π2 = second person singular and any plural personal subject
π3 = third person singular subject
s = statement (declarative sentence)
s1 = statement in present tense
s2 = statement in past tense
q̄ = question
q = yes-or-no question
q1 = yes-or-no question in present tense
q2 = yes-or-no question in past tense
i = infinitive of transitive verb
j = infinitive of complete verb phrase
j̄ = complete infinitive with to
o = direct object
n = name
n0 = mass noun
n1 = count noun
n2 = plural noun
n̄ = complete noun phrase
p1 = present participle
p2 = past participle

For semantic considerations, however, it is more natural to reduce the number
of atomic types. Lambek’s n̄ can be defined as s/(n\s) or (s/n)\s, depending on
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the role in a sentence (subject or object). Some authors choose np (noun phrase) as
an atom and assign (np\s)/np to transitive verbs, instead of (n\s)/n (this neglects
tense and number).

Every proof of Γ ⇒ α in the sequent system of L determines a unique brack-
eting of Γ, and similarly for NL. This induces a unique phrase structure of the
parsed expression. Due to associativity, L is ‘structurally omnipotent’: every pos-
sible bracketing of Γ comes from some proof of Γ ⇒ α (if (Cut) can be used).
Consequently, Lambek grammars based on L are not sensitive to phrase struc-
tures; they describe languages of strings.

On the contrary, Lambek grammars based on NL naturally describe languages
of phrase structures. [38] shows the strong equivalence of these grammars and
BCGs. Therefore some linguists prefer this weaker logic. It is quite weak, indeed;
neither 12, nor 13 can be parsed in NL, if the same types are used. Worthy of
notice, with NL one can interchange the roles of functors and arguments. From
x : α and y : α\β we infer (x, y)2 : β, but, using (L1), we obtain x : β/(α\β),
hence also (x, y)1 : β.

3.2. Extensions

3.2.1. Multi-modal systems. To make it more flexible Moortgat [49] and other
authors extend NL in different ways: admit several products ⊗i with residuals
\i, /i and unary modalities ♦i,�

↓
i , which form a residuation pair (♦iα ⇒ β and

α ⇒ �↓
i β are equivalent in models and derivable from each other in the formal

system). From ♦iα ⇒ ♦iα we obtain α ⇒ �↓
i ♦iα, and from �↓

i α ⇒ �↓
i α we obtain

♦i�
↓
i α ⇒ α.
Let us consider an example from [50]. np can be lifted up to both �↓

n♦nnp and
�↓

a♦anp, where the subscripts abbreviate nominative and accusative. We assign np
to John, Mary, �↓

n♦nnp to he, she, �↓
a♦anp to him, her, and (�↓

n♦nnp\s)/�↓
a♦anp

to likes. The resulting grammar assigns s to John likes Mary, he likes her,
but not to her likes Mary.

Another example comes from [49]. Let r be the type of relative clause, e.g.
that Kazimierz wrote (in the book that Kazimierz wrote). With L we can
assign r/(s/np) to that, which yields that Kazimierz wrote: r, since

r/(s/np), np, (np\s)/np ⇒ r

is provable. This sequent, however, is not provable in NL (with any bracketing).
We assign r/(s/♦a�↓

a) to that and admit the weak associativity axiom:

(α · β) · ♦aγ ⇒ α · (β · ♦aγ).

In NL we prove (np, ((np\s)/np, np)) ⇒ s, and consequently,

(np, ((np\s)/np, ♦a�↓
anp)) ⇒ s.

This yields ((np, (np\s)/np),♦a�↓
anp) ⇒ s, by the new axiom, hence

(np, (np\s)/np) ⇒ s/♦a�↓
anp,

by (⇒ /). Thus, Kazimierz wrote: s/♦a�↓
anp and that Kazimierz wrote: r.
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These examples show the spirit of multi-modal Lambek grammars, exten-
sively studied by a group of contemporary linguists. The unary modalities are
used to construct subtypes and super-types of some types and to restrict associa-
tivity and commutativity to some special cases. (By a subtype of α we mean a
type β such that β ⇒ α is true, not a subformula of α.) This resembles the usage
of exponentials !, ? in linear logic, where structural rules (weakening, contraction)
are limited to formulas !α, ?α. More information on the multi-modal framework
can be found in [49, 51, 50].

Morrill [52] elaborated Discontinuous Lambek Calculus, a special multi-modal
and multi-sorted logic, intended to process types of discontinuous expressions. In
language models, one admits strings with some occurrences of | (separator); α⊗i β
denotes the substitution of β for the i−the separator in α. The interpretation of
product as substitution also appeared in [15].

3.2.2. Substructural logics. One can add lattice connectives ∧,∨, satisfying the
lattice laws. It suffices to add:

α ∧ β ⇒ α α ∧ β ⇒ β
α ⇒ β α ⇒ γ

α ⇒ β ∧ γ

α ⇒ α ∨ β β ⇒ α ∨ β
α ⇒ γ β ⇒ γ

α ∨ β ⇒ γ

to the first axiomatization of L or NL. The corresponding sequent systems (we
skip details) admit cut elimination, hence both logics are decidable. Here are the
distributive laws, provable in NL with ∧,∨.

α · (β ∨ γ) ⇔ (α · β) ∨ (α · γ) (α ∨ β) · γ ⇔ (α · γ) ∨ (β · γ)

α\(β ∧ γ) ⇔ (α\β) ∧ (α\γ) (α ∧ β)/γ ⇔ (α/γ) ∧ (β/γ)

(α ∨ β)\γ ⇔ (α\γ) ∧ (β\γ) α/(β ∨ γ) ⇔ (α/β) ∧ (α/γ)

Let us note some simple applications of types with ∧,∨ in type grammars.
Lambek [41] noticed that a type assignment I(v) = {α1, . . . , αn} could be replaced
with the rigid type assignment I(v) = α1 ∧ · · · ∧αn. Another application concerns
subtypes. Lambek [44] needs nonlogical assumptions πi ⇒ π, sj ⇒ s, for i = 1, 2, 3,
j = 1, 2. Instead one can define s = s1 ∨ s2, π = π1 ∨ π2 ∨ π3 and apply a
pure logic with ∨ but no nonlogical assumptions (according to the paradigm of
lexicality). Kanazawa [35] proposed feature-decomposition types: works is of type
(np ∧ sg)\s, work of type (np ∧ pl)\s, worked of type np\s, and became of type
((np\s)/(np ∨ ad), where np, sg, pl, ad are types of noun phrase, singular, plural,
and adjective, respectively.

By L1 we denote L with constant 1 and the axioms:

1 · α ⇔ α α · 1 ⇔ α .

L1 is strongly complete with respect to residuated monoids, i.e. residuated semi-
groups with an element 1 (the unit for product). The sequent system is obtained
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from that for L by admitting sequents ⇒ α (interpreted in algebras as 1 ≤ µ(α)),
allowing Γ to be empty in rules (⇒ \), (⇒ /), and adding:

(1 ⇒)
Γ, Γ′ ⇒ α

Γ, 1, Γ′ ⇒ α
(⇒ 1) ⇒ 1 .

NL1 can be presented in a similar way. Notice that in L1 one proves new laws, not
containing 1, nor the empty antecedent, e.g. α/(α\α) ⇒ α; ⇐ is provable in L.
To prove the former, from α ⇒ α infer ⇒ α\α, by (⇒ \), then apply (/ ⇒). This
proof works in NL1 as well.

The language models for L1 are algebras of subsets of Σ∗ = Σ+ ∪ {ε}; the
operations ·, \, / for languages are defined as above except that Σ+ is replaced
with Σ∗. The language {ε} is the unit for product. The intended models for NL1
employ languages of phrase structures, now enriched with the empty structure ε
such that (ε, x) = (x, ε) = x for any phrase structure x.

Some linguists object the suitability of L1 as a logic for type grammars.
α/α ⇔ (α/α)/(α/α) is provable in L1, hence nc/nc and (nc/nc)/(nc/nc) are
equivalent, but the former is a natural type of adjectives and the latter of adverbs.

On the other hand, logicians prefer L1 and its extensions. In these systems,
some formulas are provable (a formula α is said to be provable, if ⇒ α is prov-
able); for example, α\α in NL1 and (α\β)\((γ\α)\(γ\β)) in L1. Furthermore,
every sequent is deductively equivalent to a formula, e.g. α, β ⇒ γ to β\(α\γ).
Accordingly, these logics can be presented in the form of Hilbert style systems and
more easily compared with other nonclassical logics. For example, the product-free
L1 can be axiomatized as a Hilbert style system with the following axioms and
rules.

(a.1) 1 (a.2) 1\(α\α) (a.3) ((α\β)/γ)\(α\(β/γ)) (a.4) (α\(β/γ))\((α\β)/γ)

(a.5) (α\β)\((γ\α)\(γ\β)) (a.6) ((α/γ)/(β/γ))/(α/β)

(mp\) α α\β
β

(\-/)
α\β
β/α

For the 1-free fragment, (a.1), (a.2) are replaced by (id) α\α. Other axiom systems
can be found in [70] and for richer logics in [26].

L1 with ∧,∨ is called Full Lambek Calculus (FL) and regarded as a basic sub-
structural logic [26]. Substructural logics can be defined as axiom and rule exten-
sions of FL. They correspond to some classes (usually varieties or quasi-varieties)
of residuated lattices, i.e. lattice-ordered residuated monoids. One often adds a new
constant 0 and defines negations: ∼ α = α\0, −α = 0/α (0 is interpreted as an
arbitrary element of the residuated lattice).

The term ‘substructural logics’ refers to the fact that sequent systems for
these logics lack some structural rules, characteristic of the Gentzen system for
intutionistic logic: exchange (e), contraction (c), left weakening or integrality (i),
right weakening (o). The first three rules have the following forms.

(e)
Γ, α, β, Γ′ ⇒ γ

Γ, β, α, Γ′ ⇒ γ
(c)

Γ, ∆, ∆, Γ′ ⇒ α

Γ, ∆, Γ′ ⇒ α
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(i)
Γ, Γ′ ⇒ β

Γ, α, Γ′ ⇒ β

They express some algebraic properties of product: (e) a · b = b ·a, (c) a ≤ a ·a, (i)
a · b ≤ a, a · b ≤ b (with 1 this amounts to a ≤ 1). (o) involves sequents of the form
Γ ⇒ (interpreted as µ(Γ) ≤ 0). They can be eliminated, and (o) can be replaced
by the axiom Γ, 0, Γ′ ⇒ α.

For logics with (e), corresponding to commutative algebras, α\β is equivalent
to β/α (in algebras a\b = b/a), and one writes α → β for both. The sequent
systems are simpler (we omit details). Also ∼ α is equivalent to −α, and one
writes ¬α for both.

From the algebraic point of view, substructural logics treat implication(s)
as residual(s) of the product operation; the latter usually differs from the lattice
meet. Many well-known nonclassical logics belong to this family: relevant logics,
many-valued logics, fuzzy logics, and intuitionistic and classical logics as the limit
cases. For instance, intuitionistic logic amounts to FL with (e), (c), (i), (o) (in
fact, (e) is derivable with (c), (i)), and  Lukasiewicz infinitely valued logic to FL
with (e), (i), (o) and the axiom α ∨ β ⇔ (α → β) → β [26].

Linear logic of Girard [28] can be presented as FL with 0, (e) and the double
negation axiom ¬¬α ⇒ α (⇐ is provable); we neglect exponentials !, ?. Non-
commutative versions are due to Yetter [68] and Abrusci [1]. The former can be
presented as FL with 0 and the axioms α\0 ⇔ 0/α (hence ∼ α and −α collapse in
¬α) and ¬¬α ⇒ α; the latter as FL with 0 and the axioms ∼ −α ⇒ α, − ∼ α ⇒ α
(again ⇐ are provable). Both logics are conservative extensions of FL without 0
[2]. In [26] they are called Cyclic Involutive Full Lambek Calculus (CyInFL) and
Involutive Full Lambek Calculus (InFL), respectively.

Cut-free sequent systems of linear logics look differently. Formulas are built
from atoms by ⊗,⊕ and negation(s), where ⊗ stands for product and ⊕ for the
dual product (‘par’). In algebras, a⊕b = ¬(¬b⊗¬a) for Girard’s logic and CyInFL
and a⊕ b =∼ (−b⊗−a) for InFL. One employs classical sequents Γ ⇒ ∆ or one-
sided sequents only: either ⇒ ∆ (Schütte style), or Γ ⇒ (dual Schütte style). Each
comma Γ is interpreted as product and in ∆ as dual product. In InFL, presented
in this way, one can define \, / as follows: α\β =∼ α⊕ β, α/β = α⊕−β.

In the literature on linear logics, ⊗,⊕, \, 1, 0 and negation(s) are referred to
as multiplicatives and ∧,∨ (also constants >,⊥, interpreted as the greatest and the
least element) as additives. According to a different tradition, they are intensional
and extensional connectives and constants, respectively. L1 is often characterized
as the intuitionistic fragment of multiplicative linear logic.

Type grammars usually employ basic intuitionistic substructural logics, often
not admitting empty antecedents of sequents and being restricted to multiplicative
connectives (also multi-modal). Nonetheless the impact of linear logics (which are
‘classical’) can be seen in current developments. I have already noted an analogy
between modalities in type grammars and exponentials of Girard [28]. Also proof
nets, i.e. a representation of proofs in multiplicative linear logics by means of
some graphs of links between formulas, are used as representations of syntactic
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structures in type grammars, either directly, or in a form suitable for intuitionistic
fragments. We cannot discuss this matter here; the reader is referred to [50].

In language models, ∧,∨ can be interpreted as the set theoretic intersection
and union of languages. Then, we obtain a distributive lattice. The distributive
laws for ∧,∨ are not provable in FL, nor other logics, discussed above. One can
add them as new axioms; it suffices to add:

(D) α ∧ (β ∨ γ) ⇒ (α ∧ β) ∨ (α ∧ γ) .

Nevertheless, some interesting linguistic interpretations of logics without (D)
are possible. Clark [22] introduced syntactic concept lattices as a special kind of
concept lattices from lattice theory. Let L0 ⊆ Σ∗ be a fixed language. Pairs (x, y),
for x, y ∈ Σ∗, are called contexts. For a set of contexts X, one defines XC as the
set of all z ∈ Σ∗ such that xzy ∈ L0, for all (x, y) ∈ X. The sets of the form
XC are called syntactic concepts for L0. They can be interpreted as the syntactic
categories determined by L0, a reasonable generalization of Husserl’s idea, followed
by Ajdukiewicz. Since L provides nontrivial laws α ⇒ β, syntactic categories
in Lambek grammars cannot be equivalence classes (substitution classes). The
family of syntactic concepts for L0 is a complete residuated lattice with operations:
X ∧ Y = X ∩ Y , X ∨ Y (resp. X ⊗ Y , 1) equal to the smallest concept containing
X ∪ Y (resp. X · Y , {ε}), and \, / defined as for languages.

3.2.3. Semantic types. The product-free L with (e) was studied by van Benthem
[9, 10] as a logic of semantic types; we call this logic the Lambek-van Benthem
calculus (LB). Proofs in a natural deduction system (ND-system) for LB can be
encoded by some terms of typed lambda calculus, namely linear terms (i.e. every
λ binds exactly one occurrence of a variable), satisfying the additional constraint:
no subterm is closed. This is an adaptation of the ‘Curry-Howard isomorphism’
between ND-proofs and lambda terms [59]. Since every ND-proof in L can be
translated into an ND-proof in LB, the former determines a unique lambda term;
this lambda term, interpreted in a standard type-theoretic model (see Section 2),
denotes a semantic transformation corresponding to the syntactic parsing in the
grammar. Size limits do not allow us to discuss this framework in detail. Let us
consider one example. Recall that the characteristic inference rules of ND-systems
are the introduction rules and the elimination rules for connectives.

From n ⇒ n and n\s ⇒ n\s we get n, n\s ⇒ s, by the \−elimination rule:
from Γ ⇒ α and ∆ ⇒ α\β infer Γ, ∆ ⇒ β (in an ND-system for L). This is
translated in LB as: from e → t ⇒ e → t and e ⇒ e infer e → t, e ⇒ t, by the
→ −elimination rule (in an ND-system for LB). In L we obtain n ⇒ s/(n\s), by
the /−introduction rule, which is translated into e ⇒ (e → t) → t in LB. The
ND-proof in LB is encoded by the term:

λye→t.ye→txe.

This is a linear term, satisfying the additional constraint. In a type-theoretic model,
if xe is valuated as a ∈ De (an individual), then this term denotes the family of
all (characteristic functions of) X ⊆ De such that a ∈ X. Thus, the syntactic law
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n ⇒ s/(n\s) corresponds to the semantic transformation which sends an individual
into the family of all properties (interpreted extensionally) of this individual. In
particular, any proper noun (denoting an individual) can be treated as a noun
phrase (denoting a generalized quantifier, i.e. a family of sets of individuals).

We have explained a semantic interpretation of (L1). Similarly, (L3) corre-
spond to the composition of functions, (L5) to the interchange of arguments, and
so on. An interesting theorem of [9] shows that every provable sequent of LB ad-
mits only finitely many different proofs up to the equality in lambda calculus; so
every expression possesses only finitely many ‘semantic readings’. Further studies
on this topic can be found in [47, 49].

Analogous correspondences were elaborated for richer logics [66]. Lambek
[42] studied category-theoretic interpretations of L and its extensions. Abstract
Categorial Grammars, introduced by de Groote [29], employ linear lambda-terms
as representations of both syntactic structures and semantic structures (logical
forms) of expressions in natural language with certain homomorphisms between
them.

3.2.4. Pregroup grammars. Lambek [43] proposed another extension of L1, called
compact bilinear logic (CBL). It corresponds to pregroups, i.e. ordered algebras
(A, ·,r ,l , 1,≤) such that (A, ·, 1,≤) is a partially ordered monoid and r,l are unary
operations, satisfying the adjoint laws:

al · a ≤ 1 ≤ a · al and a · ar ≤ 1 ≤ ar · a ,

for any a ∈ A. ar (resp. al) is called the right (resp. left) adjoint of a. (This termi-
nology is transferred from category theory.) Pregroups coincide with the algebras
for the multiplicative fragment of noncommutative linear logic of Abrusci [1] such
that ⊗ equals ⊕ and 1 = 0. The residuals of product are defined by: a\b = ar · b,
a/b = a · bl. We have: arl = alr = a, (a · b)r = br · ar, and similarly for l. Adjoints
reverse the ordering: if a ≤ b then br ≤ ar and bl ≤ al.

CBL is a logic of free pregroups. From atoms p, q, r, . . . one builds simple
types p(n), where n is an integer. p(0) is interpreted as p, p(n), n > 0, as pr...r (n
times), and p(n), n < 0, as pl...l (|n| times). Pregroup types are finite strings of
simple types.

One also assumes that the set of atoms is partially ordered by a relation
�. The relation ⇒, between pregroup types, is defined by the following rewriting
rules:

: (Contraction) X, p(n), p(n+1), Y ⇒ X, Y ,
: (Expansion) X, Y ⇒ X, p(n+1), p(n), Y ,
: (Induced Step) X, p(n), Y ⇒ X, q(n), Y , if either p � q and n is even, or q � p

and n is odd.

U ⇒ V holds, if U can be transformed into V by finitely many applications of
these rules.
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Pregroup grammars are defined as Lambek grammars except that L is re-
placed by CBL (and types of L by pregroup types). Lambek [43] shows that (Ex-
pansion) can be eliminated from proofs of X ⇒ p, where p is an atom. Furthermore,
(Induced Step) and (Contraction) can be collapsed with one rule of generalized
contraction:

: (GCON) X, p(n), q(n+1), Y ⇒ X, Y , with the same condition as in (Induced
Step).

If α1, . . . , αn are assigned to v1, . . . , vn, respectively, then the grammar as-
signs p to v1 . . . vn, if the concatenation α1 · · ·αn reduces to p by a finite number of
applications of (GCON) and, possibly, (Induced Step) at the end of the reduction.
Such derivations can be presented by means of links, joining the reduced types of
(GCON).

For example, we assume she: π3, will: πrs1j
l, see: iol and him: o, where

i, j are types of infinitive of intransitive verb and infinitive of any complex verb
phrase, and π, π3, o are understood as above. We also assume π3 � π, i � j. Then,
she will see him is assigned s1, since:

π3, πrs1j
l, iol, o ⇒ s1 .

The reduction can be depicted as follows:

π3, πr s1 jl, i ol, o

where each link corresponds to one application of (GCON).
With man: n1 (count noun), whom: nr

1n1o
llsl, saw: πrs2o

l and s2 � s, one
assigns n1 to man whom she saw, by the reduction:

n1, nr
1 n1 oll sl, π3, πr s2 ol .

These examples come from [44] (up to minor changes), where Lambek ana-
lyzed many basic grammatical constructions of English within the pregroup frame-
work. In other publications he and his collaborators applied this approach to sev-
eral languages: German, French, Italian, Polish and some non-European languages;
see [44] for references.

Parsing by pregroups is computationally simple; it runs in polynomial time
[18], whereas L is NP-complete [57]. CBL is stronger than L1: (p/((p/p)/p))/p ⇒ p
is provable in CBL (define / as above), but not in L1. The logical meaning of the
new laws is not clear; the latter does not hold even in classical logic (interpret /
as implication with the antecedent on the right). No type-theoretic semantics for
pregroup grammars is known. It seems that CBL is an algebraic calculus rather
than a genuine logic. This opinion is confirmed by the fact that bounded pregroups
are trivial (one-element) algebras, hence CBL with > is inconsistent [18]. (The
latter paper shows that pregroup grammars are equivalent to CFGs.)

On the other hand, all linguistic examples, analyzed by Lambek and other
authors by means of pregroups, can easily be parsed with L. We return to man
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whom she saw. The pregroup types, given above, are translations of L-types; e.g.
whom: (n1\n1)/(s2/o), saw: (π\s2)/o. The sequent:

n1, (n1\n1)/(s/o), π3, (π\s2)/o ⇒ n1

is provable in L augmented with s2 ⇒ s, π3 ⇒ π. Therefore, the semantics for
these examples can be transferred from L.

3.2.5. Modal logics. At the end, we consider other modal logics, extending L and
NL. [20] studied NL with ∧,∨, which satisfy the laws of a distributive lattice,
and its extensions with either classical negation (BFNL), or intuitionistic implica-
tion and >,⊥ (HFNL); these logics were presented as sequent systems with cut.
Hilbert-style systems for the latter logics, denoted by NLC and NLI, were stud-
ied in [33, 34]. The connectives are ∧,∨,⇒,¬ (now ⇒ stands for the classical or
intuitionistic implication, and ¬ for the classical or intuitionistic negation) and
Lambek connectives ·, \, /. Lambek’s sequents α ⇒ β are treated as conditionals.
NLC (resp. NLI) can be axiomatized by all tautologies of classical (resp. intuition-
istic) propositional logic in the extended language and the rules: modus ponens
for ⇒, (Res.1), (Res.2). In the associative versions LC, LI one adds axioms (A.1),
(A.2). The following formulas, similar to the modal axiom (K), are provable in
NLI, hence also in NLC, LI, LC (we assume that \, / bind stronger than ⇒).

γ\(α ⇒ β) ⇒ (γ\α ⇒ γ\β) (α ⇒ β)/γ ⇒ (α/γ ⇒ β/γ)

It should be emphasized that the theorems (i.e. provable formulas) of these
systems are >−theorems: they satisfy µ(α) = > in algebras. In substructural logics
one usually considers 1-theorems (1 ≤ µ(α) in algebras). Both notions collapse for
substructural logics with (i). LC is a conservative extension of L, and NLC of NL.

NLC, LC and NLI, LI are, in fact, some classical and intuitionistic multi-
modal logics; product and its residuals are binary modalities. This perspective was
already admitted in Arrow Logic of van Benthem [11] and multi-modal versions
of Lambek calculi. [33, 34] study relational frames for NLC, LC, NLI, LI, proving
some completeness and decidability results. Interestingly, the undecidability of LC
follows from some results of [39], whereas LI is decidable [34]. For NLC, NLI even
the consequence relations are decidable [20].

3.3. Lambek versus Ajdukiewicz

Although Lambek logics are much stronger than AB, the parsing procedure in
Lambek grammars can be carried out in a similar way as in BCGs. The action
of L and related systems can be reduced to the lexical level: the type lexicon is
extended by new types, derivable from the initial types in the system.

For example, if α, β, γ ⇒ δ is provable in L, then α ⇒ (δ/γ)/β is provable,
by (⇒ /), and the sequent:

(δ/γ)/β, β, γ ⇒ δ

is provable in AB. For NL, if α, (β, γ) ⇒ δ is provable, then α ⇒ δ/(β · γ) is
provable, and δ/(β · γ), (β, γ) ⇒ δ is provable in AB (with product; see [38]). To
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v1 . . . vn

α1 . . . αn ⇒ s
⇓ . . . ⇓
β1 . . . βn

AB⇒ s

Figure 2

eliminate product, one can use β ⇒ (α\δ)/γ and prove in AB:

α, (α\δ)/γ, γ ⇒ δ .

For vi : αi, i = 1, . . . , n, a successful parsing can be arranged as in Figure 2
(αi ⇒ βi is provable in a Lambek logic).

In the same way one can arrange semantic derivations: the semantic trans-
formations, definable in (a fragment of) lambda calculus, can be performed on
the initial denotations of words in a type-theoretic model, and the denotations of
compound expressions are obtained by the (iterated) application of functions to
their arguments.

Such laws as (L1), (L2), (L4) produce infinitely many types β derivable from
a single type α. For instance, starting from n, one derives:

n ⇒ s/(n\s) ⇒ s/((s/(n\s))\s) ⇒ · · · .

Nonetheless only finitely many of them are really needed to parse any ex-
pression in a particular grammar. [16] shows that every type grammar G, based
on L, is equivalent to a BCG G′ whose type lexicon extends that of G by finitely
many new types, derivable in L from those in the type lexicon of G. The same was
earlier shown for NL in [38].

These results seem to support the opinion that Lambek logics can be regarded
as general logics of syntactic or semantic types rather than type processing systems
in type grammars. The former explain deeper reasons for syntactic ambiguities of
expressions and guide our choice of lexical types. On the other hand, parsing can
be based on the classical type reduction procedure, proposed by Ajdukiewicz, with
necessary modifications.

This opinion is non-orthodox. Many authors maintain the priority of Lambek
logics, directly applied in grammars, according to the general paradigm of parsing
as deduction. They, however, usually ignore the problems of efficiency. Parsers for
BCGs can be designed like for CFGs; they run in cubic time in the length of the
parsed expression. This is impossible for type grammars based on L, which is NP-
complete [57]. Type grammars with NL remain polynomial [30], but parsers are
not as simple as for BCGs.

At the end of this subsection, let me mention some developments in type
grammars, which are closer to Ajdukiewicz.
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Combinatory Categorial Grammars (CCGs), developed by M. Steedman, A.
Szabolcsi and others, enrich AB with finitely many new reduction patterns, seman-
tically corresponding to some combinators, i.e. closed lambda-terms; see [61] for
an overview. This direction continues certain ideas of Curry [23] and Shaumyan
[58]. Some of the new patterns are provable in L, but others require a stronger
logic (some instances of exchange and contraction). The Ajdukiewicz procedure
enriched with composition laws (similar to (L3), (L4)) was earlier proposed by
Geach [27].

Categorial Unification Grammars (CUGs), studied by Uszkoreit [65], admit
polymorphic types, containing variables, which range over a family of types. The
simplest example is (x\x)/x as the type of and. In the course of parsing, one
applies the reduction rules of BCGs and a unification algorithm. For instance,
α, β\γ ⇒ σ(γ), where σ is a substitution such that σ(α) = σ(β).

L with ∧,∨ can generate some non-context-free languages, e.g. the intersec-
tion of two context-free languages [35]. This also holds for grammars based on
AB with ∧,∨. Other frameworks going beyond the context-free world are Tupled
Pregroup Grammars [60] and Categorial Dependency Grammars [24]. Both ap-
proaches employ very restricted types only; the resulting grammars might be pre-
sented as BCGs with all types of order at most 1 and certain constraints imposed
on reductions.
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